DiSSCo related output

This template collects the required metadata to reference the official Deliverables and Milestones of DiSSCo-related projects. More information on the mandatory and conditionally mandatory fields can be found in the supporting document 'Metadata for DiSSCo Knowledge base' that is shared among work package leads, and in Teamwork > Files. A short explanatory text is given for all metadata fields, thus allowing easy entry of the required information. If there are any questions, please contact us at info@dissco.eu.

Title

DiSSCo Prepare Deliverable D1.2 Report on Earth sciences use cases and user stories

Author(s)

von Mering, Sabine Petersen, Mareike Fitzgerald, Heli Juslén, Aino Raes, Niels Islam, Sharif Berger, Frederik von Bonsdorff, Tea Figueira, Rui Haston, Elspeth Häffner. Eva Livermore, Laurence Runnel, Veljo De Smedt, Sofie Vincent, Sarah Weiland, Claus

Affiliation

Publisher

Resource ID

No

Related identifiers

Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany

Identifier of the author(s)

https://orcid.org/0000-0003-2982-7792 https://orcid.org/0000-0001-8666-1931 https://orcid.org/0000-0002-6754-6409 https://orcid.org/0000-0001-9434-5250 https://orcid.org/0000-0002-4329-4892 https://orcid.org/0000-0001-8050-0299 https://orcid.org/0000-0001-8400-3337 https://orcid.org/0000-0001-6066-5256 https://orcid.org/0000-0002-8351-4028 https://orcid.org/0000-0001-9144-2848 https://orcid.org/0000-0001-6448-5826 https://orcid.org/0000-0002-7341-1842 https://orcid.org/0000-0001-5198-8678 https://orcid.org/0000-0001-7690-0468 https://orcid.org/0000-0002-4012-0571 https://orcid.org/0000-0003-0351-6523

Contributors

Schulman, Leif Järvi, Jani Frank. Jiři Loo. Tina Mergen, Patricia Semal, Patrick

Identifier of the publisher

Publication year 2021

Relation type https://doi.org/10.7479/17qp-ge55 (Data publication) Another reference document

Creation date 01/04/2021

Modification date 22/04/2021

Summary of modification

https://doi.org/10.34960/n3dk-ds60

https://doi.org/10.34960/xhxw-cb79 (D1.1)

Is it the first time you submit this outcome?

Version

Minor changes to the text of Appendix 3. 1.1

Citation

von Mering, S., Petersen, M., Fitzgerald, H., Juslén, A., Raes, N., Islam, S., Berger, F, von Bonsdorff, T., Figueira, R., Haston, E., Häffner, E., Livermore, L., Runnel, V., De Smedt, S., Vincent, S., Weiland, C. (2021). DiSSCo Prepare Deliverable D1.1 Report on Life sciences use cases and user stories. https://doi.org/10.34960/n3dk-ds60

Abstract

This Deliverable D1.2 from the project DiSSCo Prepare reports the results of Task 1.2 "Analyse Earth sciences use cases and user stories". A total of 128 Earth sciences user stories and use cases was analysed with a special emphasis on the functional demands and required services for the DiSSCo Research Infrastructure. Use cases were gathered from surveys, publications and personal interviews, they were assigned to one out of seven stake-holder groups. For each use case up to five functional demand categories were assigned. Use case analyses revealed that the most important demands for Earth science collections were 'Metadata on collection or record level', 'Advanced search functionality', 'Data integration' and 'Tools for reporting & statistics'. The socio-economic importance of the use cases is discussed and recommendations for the related ongoing Work Packages and the DiSSCo services development in general are given in this report.

Content keywords

scientific

Project reference DiSSCo Prepare (GA-871043)

Project output Deliverable

Deliverable/milestone number D1.2

Dissemination level Public

License CC0 1.0 Universal (CC0 1.0)

Resource type Text

Format PDF

Funding Programme H2020-INFRADEV-2019-2

Contact email sabine.vonmering@mfn.berlin

WP number

WP1

Rights

DiSSCo Prepare WP 1 Task 1.2 – Deliverable D1.2 Report on Earth sciences use cases and user stories

- **WP Lead:** Henrik Enghoff (UCPH)
- Task Lead:Mareike Petersen (MfN)
- Authors:Sabine von Mering (MfN), Mareike Petersen
(MfN), Heli Fitzgerald (Luomus), Aino Juslén
(Luomus), Frederik Berger (MfN), Tea von
Bonsdorff-Salminen (Luomus), Niels Raes
(Naturalis), Sharif Islam (Naturalis), Rui
Figueira (U Lisboa), Elspeth Haston (RBGE),
Eva Häffner (BGBM), Laurence Livermore
(NHM), Veljo Runnel (UT), Sofie De Smedt
(Meise BG), Sarah Vincent (NHM), Claus
Weiland (SGN)
- Contributors: Leif Schulman (Luomus), Jani Järvi (Luomus), Jiří Frank (NM), Tina Loo (Naturalis), Patricia Mergen (Meise BG), Patrick Semal (RBINS)

Abstract

This Deliverable D1.2 from the project DiSSCo Prepare reports the results of Task 1.2 "Analyse Earth sciences use cases and user stories". A total of 128 Earth sciences user stories and use cases was analysed with a special emphasis on the functional demands and required services for the DiSSCo Research Infrastructure. Use cases were gathered from surveys, publications and personal interviews, they were assigned to one out of seven stakeholder groups. For each use case up to five functional demands for Earth science collections were 'Metadata on collection or record level', 'Advanced search functionality', 'Data integration' and 'Tools for reporting & statistics'. The socio-economic importance of the use cases is discussed and recommendations for the related ongoing Work Packages and the DiSSCo services development in general are given in this report.

Key words

Collections, DiSSCo, Earth sciences, geosciences, geology, mineralogy, paleontology, gap analysis, cluster analysis, research, use cases, user requirements, user stories, functional demands, service development framework, societal challenges H2020, socio-economic impact/indicators

H2020-INFRADEV-2019-2 Grant Agreement No 871043

Grant Agreement number: 871043 — DiSSCo Prepare — H2020-INFRADEV-2018-2020 / H2020-INFRADEV-2019-2

INDEX

01	INTRODUCTION	4
02	APPROACH	4
	Targeted Groups for additional surveys and interviews	5
	Functional demands	5
	Analysing the user stories	6
	Making the user stories available for future use	6
03	RESULTS	7
	Compilation of use cases and user stories	7
	Functional demands for the user stories	8
	Analysing the user stories	12
	Making the user stories available for future use	14
04	DISCUSSION AND OUTLOOK	16
	Use cases and functional demands	16
	Use cases and societal challenges in Europe 2020 strategy	16
05	RECOMMENDATIONS AND LINKS TO OTHER WORK PACKAGES	18
06	REFERENCES	21
07	APPENDICES	22
	Appendix 1. Table of user story compilations from previous projects and other source	
	documents	
	Appendix 2. Use cases and functional demands tables	22
	Appendix 3. SYNTHESYS Transnational Access Analysis	22
	Appendix 4. Target Groups for additional surveys and interviews	22

01 INTRODUCTION

The Distributed System for Scientific Collections (DiSSCo) aims to provide a one-stop-shop for Natural Science Collections objects and associated information in Europe. The planned Research Infrastructure (RI) will be an important source of information for scientists from natural science disciplines but also other users from the sectors education, culture, society, politics, and economy. In order to meet the requirements of all potential stakeholders, the planning and construction of the DiSSCo RI is strongly user driven, especially in the project DiSSCo Prepare.

DiSSCo Prepare Work Package 1, Tasks 1.1 and 1.2 examined the needs of different stakeholder groups for the information that natural science specimens and collections contain and the requirements these needs set for the services to be provided by DiSSCo. More closely, within Tasks 1.1 "Analyse Life sciences use cases and user stories" and 1.2 "Analyse Earth sciences use cases and user stories", we built on existing studies and compilations covering DiSSCo-related use cases and user stories. Task 1.1 and Task 1.2 were complementary to each other, focussing on the two domains Life sciences and Earth sciences, respectively. While Task 1.1 dealt with biological collections (entomological, other zoological, botanical and mycological collections), the focus of Task 1.2 was on collections of fossils, rocks, sediment structures, minerals, and extra-terrestrial material (meteorites).

This report is part of the Deliverables D1.1 "Report on Life sciences use cases and user stories, with recommendations to WP5 and WP6" and D1.2 "Report on Earth sciences use cases and user stories, with recommendations to WP5 and WP6". The complemented corpus of Life sciences and Earth sciences user stories and use cases was analysed with a special emphasis on the functional demands for DiSSCo and its services, as well as their socio-economic importance.

02 APPROACH

As a first step, existing user stories and use case compilations and other resources were collected in a project-wide collaborative effort. All DiSSCo Prepare WP and task leaders as well as the partner institutions working on Tasks 1.1 and 1.2 were contacted and asked to add surveys, presentations, and other sources for user stories to a shared document. An overview of the resources gathered is given in Appendix 1.

From this large compilation, a table of user stories and use cases was generated. It was built mainly on results from the ICEDIG (Innovation and consolidation for large scale digitisation of natural heritage, <u>https://icedig.eu/</u>) effort (van Egmond et al. 2019), but other sources of use cases were added as well (see Appendix 1 for details). To collect and present the use cases, we decided to use the epic story format used e.g. in requirement management and adopted by van Egmond et al. (2019) as well. This format contains the following four parts:

"As a [position]... I want to... So that I can... For this I need...".

The compiled table was then adjusted to fit the task's focus on Life sciences or Earth sciences. Accordingly, a number of strictly Life science or Earth science related use cases were removed and others adapted to fit the respective domain focus. Next, duplicates were removed (user stories from different sources that were the same) and near-duplicates (e.g., differing by only one of the stages of the epic story format) were fused without losing information. Incomplete user stories, with no text in 'So that I can...' or 'For this I need...' parts, were also removed.

Subsequently, the uses cases were grouped into the seven user groups or use categories, which were also adopted from the ICEDIG project (van Egmond et al. 2019):

- 1. Research (academic, non-academic incl. Citizen Science)
- 2. Collection management
- 3. Technical support (IT & IM)
- 4. **Policy** (institutional, national & international)
- 5. Education (academic & non-academic)
- 6. Industry
- 7. External (media & empowerment initiatives)

The collected information was then evaluated, especially regarding existing gaps related to certain stakeholder groups. Once gaps were detected, information on user communities and stakeholders that might help to fill the gaps were collected.

This approach was supplemented by over 15 years of data derived from the SYNTHESYS Transnational Access programme. The programme's record of facility and collection usage requirements and formally published research outputs was clean, refactored and analysed to aid quantification and prioritisation of the user stories previously described. The detailed approach is described in Appendix 3 and summarised in the main discussion and outlook section.

Targeted Groups for additional surveys and interviews

To extend the compilation of use cases and to fill existing gaps, we reached out to all task partners to identify potential users/user groups and stakeholders that should be approached. In a first step, public relations and marketing teams of a number of partner institutions were contacted. Some additional use cases were included from responses by scientists, colleagues and other stakeholder groups.

Earth scientists (geoscientists) and broader stakeholders within the natural science collections community were contacted via mailing lists, directly (via email), targeted surveys, and interviews. In addition, a number of scientific associations/societies and interest groups were contacted. We also contacted federal or other government institutions such as geological services. Appendix 4 provides an overview of targeted groups that were contacted and asked for additional use cases.

Functional demands

During a joint session on "Use cases and user stories" during the virtual <u>All Hands Meeting of DiSSCo</u> <u>Prepare</u> in January 2021, members of both task groups worked together to further analyse the collection of use cases and user stories. The working session focussed on the functional demands these use cases will put on the DiSSCo research infrastructure (RI) and its services.

Some user requirements were already known from the epic user story format part "For this I need". However, the information given there is in many cases rather general and unspecific and functional demands for the DiSSCo Research Infrastructure had to be specified. All task partners worked collaboratively on categorization and harmonization of functional demands resulting from the use cases. Categories and subcategories for functional demands were listed and short definitions explaining what a category or subcategory comprises were included. Up to five functional demand categories or subcategories were allocated for each use case.

Further steps were also discussed during a consultation with project partners from WP5 "Common Resources and Standards" and WP6 "Technical Architecture & Services provision", and with the DiSSCo Technical Team.

Analysing the user stories

Up to five functional demands were identified for each of the 443 Life science (LS) and Earth science (ES) user stories and converted into a presence/absence matrix. The LS and ES user stories were analysed separately, some user stories applied to both domains. The ES demand categories that were not represented were excluded from the analysis, resulting in a matrix of 128 x 29 (rows & columns). For each category it was scored how often it was scored for the use cases/user stories.

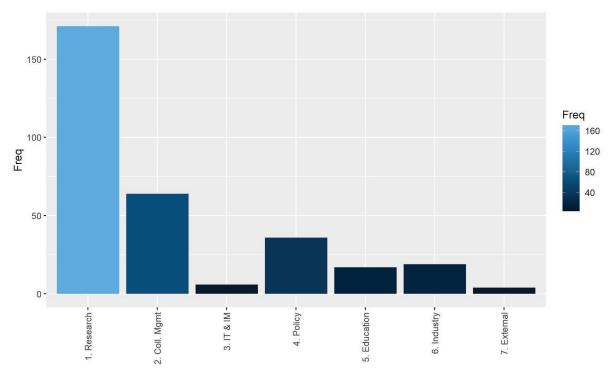
The dissimilarity matrix was calculated for the LS and ES presence/absence matrices separately using the function vegdist from the R-package 'Vegan' (Oksanen et al. 2020). As a measure of dissimilarity the Jaccard index was selected and data were subjected to presence/absence standardization. The dissimilarity matrices were further analysed with a hierarchical cluster analysis using an UPGMA (average) cluster algorithm and visualized using the 'Dendextend' R-package (Galili 2015). A heatmap visualisation was conducted to assess which similarities in demands result in clusters of user stories. The R-script used in the analysis of the user stories is available in the GitHub repository for the user stories (Raes 2021).

Making the user stories available for future use

All use cases and user stories were imported to GitHub using a semi-automatic import routine. In the repository, the use cases are available as separate "issues" and linked also to the use categories, i.e. the user or stakeholder groups. The functional demand categories scored for each use case were added as separate tags, thus allowing easy filtering.

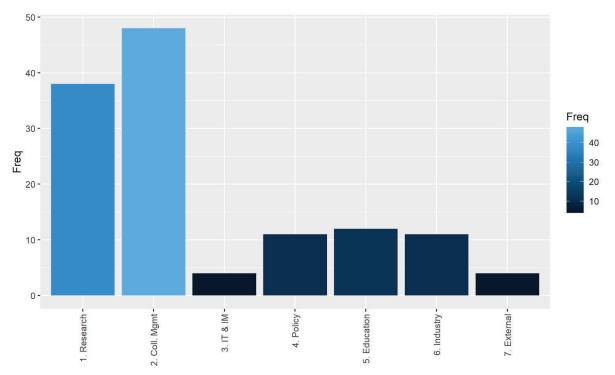
In addition, the tables comprising all use cases (Life sciences and Earth sciences together as well as separately) were also made available as csv files in a data publication (Fitzgerald et al. 2021). In these tables, numbers were added as simple identifiers (IDs) to identify the different use cases and user stories for later re-use and reference (Appendix 2; Fitzgerald et al. 2021).

03 RESULTS


Compilation of use cases and user stories

The selected, adapted, and sorted user stories and use cases were compiled in a table containing all use cases plus separate tables for Life and Earth sciences (Fitzgerald et al. 2021). The separate tables for both domains are also attached as a supplement to this Deliverable report (Appendix 2).

For Life sciences, a total of 597 user stories were collected (Fitzgerald et al. 2021). The categories "Research" and "Collection management" were the categories with the highest numbers recorded (271 and 173 user stories, respectively). Of the 597 user stories, 33 were gathered from the literature (Vissers et al. 2017, Borsch et al. 2020) and from the Final report of the GBIF Task Group (Krishtalka et al. 2019). After deduplication and removal of incomplete user stories, the number of use cases was 317 (Fitzgerald et al. 2021).


A total of 122 user stories applicable to Earth sciences were collected. The total number of user stories and use cases for Earth sciences after de-duplication and addition was 128 (see Appendix 2; Fitzgerald et al. 2021). With 38 and 48 user stories respectively, the categories "Research" and "Collection management" were also the categories with the highest numbers recorded.

While the high number of user stories in the "Research" and "Collection management" categories was not unexpected, the number of use cases collected in some of the other categories were fewer than expected. The largest potential gaps were detected in the categories "External (media & empower-ment initiatives)", "Industry" and Technical support". For the categories "Education", "Technical support" and "Policy", smaller numbers of use cases were also collected. Figures 1 and 2 summarize the number of use cases collected per use case category for both Life sciences and Earth sciences.

Figure 1. Number of use cases/user stories collected per category for Life sciences, total number of use cases n= 317.

Figure 2. Number of use cases/user stories collected per category for Earth science, total number of use cases n= 128.

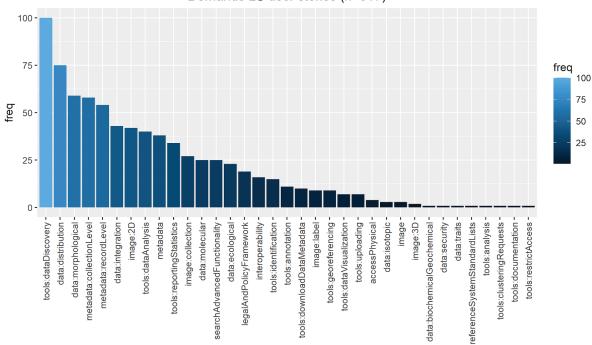
Functional demands for the user stories

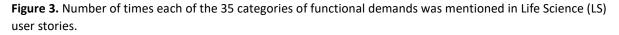
Communication with the representatives of the DiSSCo Technical team developing technical aspects and services of RI DiSSCo played an important role in ensuring the usefulness of the functional demand categories and recommendations. The development led to recognition of categories and subcategories. Many use cases included more than one functional demand, which were separated.

Altogether 35 functional demand categories and subcategories were identified based on the user stories (Table 1). Functional demands provided by users were placed into 11 categories and 24 subcategories linked to them. The most diverse categories were data and tools with six and twelve subcategories. Definitions for all categories and subcategories are given in Table 1. In the Earth sciences use cases subset, only 29 of the 35 functional demand categories and subcategories were used.

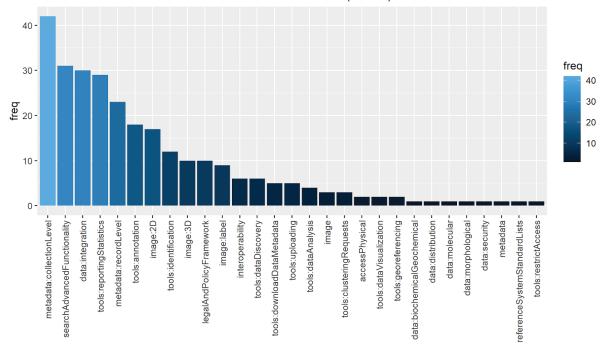
We recognized that data security and API were general demands but not pointed out in the use cases. Therefore they were not scored, except a specific 'Data security' use case requiring limited data access/availability. For life sciences the most important functional demands were 'Tools for data discovery' (scored for 100 of the 317 total use cases), 'Distribution data' (75), 'Morphological data' (59) and both metadata subcategories (58, 54) (Figure 1). For Earth sciences, the five most important functional demand categories were 'Metadata on collection level' (scored for 42 of the 128 use cases), 'Advanced search functionality' (31), 'Data integration' (30), 'Tools for reporting & statistics' (29), 'Metadata on record level' (23) (Figure 2). There were also several functional demand (sub-)categories that were mentioned only once (see Figure 3. and 4.). Even though they were less often required, some of these use cases and the corresponding required functionalities might be relevant for future developments.

Functional demands categories and subcategories	Definitions
Advanced search functionality	Advanced search functionalities include technologies like faceted search (filtering), elastic search and Apache Solr
Data	Units of information relating to a specimen or observation
Biochemical or geochemical data	Data describing the biochemical or geochemical composition of a specimen, including secondary compounds in plants
Distribution data	Data describing the specimen collecting locality or observation data
Ecological data	Data describing the original environment and interactions of a specimen or observation, including habitat, associated species or traits
Isotopic data	Data describing the isotopic signature of specimens resulting from isotope analysis
Molecular data	Data describing the molecular composition of a specimen, including DNA/RNA sequence data
Morphological data	Data describing qualitative or quantitative morphological characteristics of a specimen or observation, including measurements
Data integration	Linking of data from different sources, incl. cross-domain (interoperability is a prerequisite); e.g. linking type specimens with the protologue and publications with the specimens used in analyses
Data security	System properties which protect from illegal and malicious data use or from intentional corruption of data systems
Images	Digital representation of specimen images
2D images	Storing and retrieving two-dimensional digital representation of specimens
3D images	Storing and retrieving three-dimensional digital representation of specimens (3D models)


Table 1. Functional demand categories (in bold text) and subcategories (normal text) with definitions



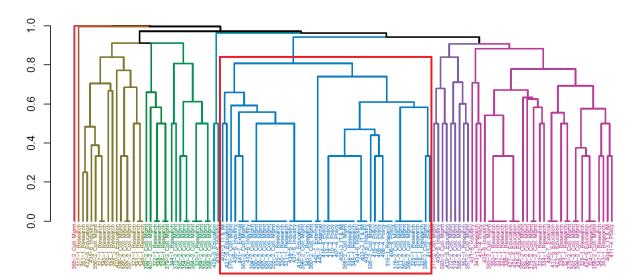
Images related to collections	Storing and retrieving digital images of field notebooks, catalogues, correspondence, photos of sampling area etc.
Label images	Storing and retrieving digital images of specimen labels
Interoperability	Standards and functionality securing interoperability with external services e.g. GBIF, CoL, thesauri
Legal and policy framework	Rules and procedures related to legal and policy issues, such as access policies or information on legal obligations linked to specimens, but also standardized information on the use assets within the infrastructure
Metadata	Information describing or providing additional facts for any part of the data
Metadata on collection level	Information describing or providing additional facts for a set of specimens
Metadata on record level	Information describing or providing additional facts for a single record
Physical access	Physical access to collections e.g. sub-collections, certain specimens
Reference system & Standard lists	Description of underlying data standards, data architectures and vocabularies which are needed for collection information system management and integration with other systems (e.g. GeoNames, Global Names Architecture, GBIF Backbone Taxonomy)
Tools	Digital applications to perform various tasks with specimen data or to interact with databases
Annotation tools	Tools to add additional information to specimen data
Tools for clustering requests	Tools to cluster related requests based on information including requester, purpose and material requested in communication/feedback system
Tools for data analysis	Tools to create data quality assessments, species distribution models
Tools for data discovery	Tools to perform complex specimen data searches simultaneously from different collections
Tools for data visualization	Tools to visualize data
Tools for documentation	Tools to enable documentation of collections and collection history


Tools for downloading data/metadata	Tools to download data or metadata resulting from a data discovery event
Tools for geo- referencing	Tools to perform georeferencing of localities relating to collections
Tools for identification	Tools to view or capture trait data for identification or tools for automated identification of specimens
Tools for limiting access to data	Tools to restrict access to any part of the data relating to a specimen, due to cultural or environmental sensitivity
Tools for reporting & statistics	Tools to produce structured data in the form of reports or statistical summaries
Tools for uploading	Tools to upload or import data

Demands LS user stories (n=317)

Demands ES user stories (n=128)

Figure 4. Number of times that each of the 29 functional demand (sub-)categories was mentioned in Earth sciences (ES) user stories.


Analysing the user stories

The cluster analysis of the Earth science use cases/user stories resulted in nine different cluster groups, shown in different colours in Figure 5 (also available in high resolution in Fitzgerald et al., 2021, which allowing to zoom in). These cluster groups correspond to use cases grouped together by having the same or a combination of similar functional demand categories (see heatmap in Figure 7). As an example, we looked at the blue cluster, which is marked by a red rectangle in Figure 5 and enlarged in Figure 6. The clustering functional demands in the two sub-cluster of the blue cluster are 'Metadata on collection level' or the combination of 'Metadata on collection <u>and</u> record level', and a combination of 'Metadata at collection level' together with 'Tools for reporting & statistics'.

The full list of functional demands behind the user story IDs and cluster dendrogram can be found in Appendix 2 and in Fitzgerald et al. (2021).

DiSSCo user stories cluster graph - Earth Sciences

Figure 5. Cluster dendrogram for the Earth Sciences user stories (n=128). Different colours correspond to nine different cluster groups. Use case IDs and user categories are given.

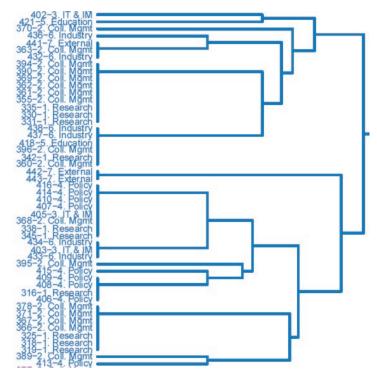
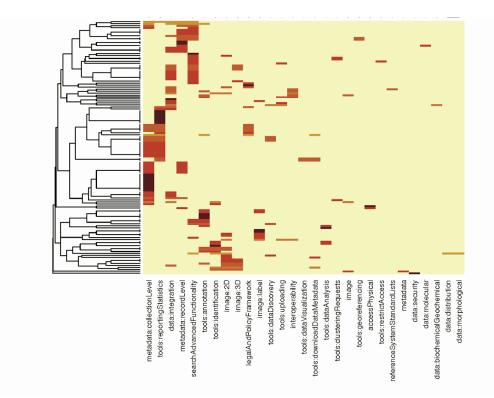
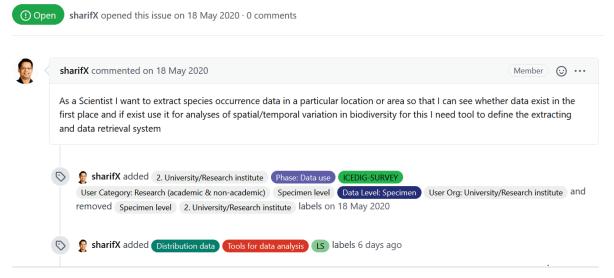



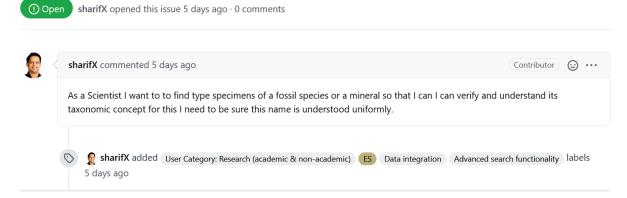
Figure 6. Cluster group example (area shown as red rectangle in Figure 5), use case IDs and user category are given.

Figure 7. Heatmap Earth Sciences user stories (n=128). Left cluster dendrogram corresponds to Fig. 6. The x-axis shows the 29 reported functional demands.

Making the user stories available for future use


To allow easy reuse, the user stories and use cases including the functional demands were made available in different formats. A data publication comprises the tables with the use case IDs, user group/use categories, descriptions of the use cases in the 'epic format', functional demand (sub-)categories plus the figures of the use case analysis (Fitzgerald et al. 2021).

In addition, all use cases and user stories incl. functional demands were made available in a dedicated repository on the platform GitHub (<u>https://github.com/DiSSCo/user-stories</u>) as a "collection of user stories describing evolving requirements of stakeholders involved in managing and using natural science collections". This facilitates future reuse of the whole compilation or selected use cases and allows referring to them separately or as a collection e.g. during the development of specific tools. Figure 8 shows two example use cases as presented in the GitHub repository.



tool to define the extracting and data retrieval system #291

find type specimens of a fossil species or a mineral #592

Figure 8. Screenshot of two selected use case in GitHub repository, shows tags for functional demands / use categories etc.

04 DISCUSSION AND OUTLOOK

Use cases and functional demands

The categories of use "Research, Collection Management, Technical support, Policy, Education, Industry, and External" were represented, the far most use cases representing Research and Collection Management.

The societally wide-ranging needs for the use of scientific collections came to the fore (Figure 1.). For instance, high-quality metadata descriptions and images are highly needed (Figure 3 and 4) and serve stakeholders from research to industry (Fitzgerald et al. 2021). The recognition and description of functional demands at appropriate and useful levels required several rounds of refinement to optimise usefulness for the further development within DiSSCo (see Table 1). The analysis of use cases and recognition of functional demands create basis for and support further RI DiSSCo development, e.g. recognition of digitisation prioritisation criteria (Task 1.3) and set the service development framework.

Data derived from records of recent collection-based projects and their outcomes can be used to augment and quantify the user stories gathered. The majority of projects submitted under existing (inperson) collection access schemes require the use of both collection material and local analytical facilities such as molecular labs, microanalysis and 2D/3D imaging suites, and geochemical identification (see Appendix 3 for details). For facilities/services that can be delivered remotely, this information is key to developing robust, appropriately scaled digital services and workflows.

Use cases and societal challenges in Europe 2020 strategy

The analysis of user stories, including its functional demands, provides important information for the identification of socio-economic impact of DiSSCo. The framework for this analysis (under development in DiSSCo Prepare Task 1.4) will link the impact of uses and applications of DiSSCo and related activities to a set of major objectives, defined by the ESFRI Working Group on monitoring RI performance (ESFRI 2019). These include:

- Enabling scientific excellence
- Delivery of education and training
- Enhancing transnational collaboration in Europe
- Facilitating economic activity
- Outreach to the public
- Optimising data use
- Provision of scientific advice
- Facilitating international co-operation
- Optimising management

These can also be arranged within four major areas - scientific excellence, economy and innovation, society, and policy - contributing to the following H2020 societal challenges (<u>Societal Challenges</u>, <u>Horizon 2020</u>):

- Health, demographic change and wellbeing;
- Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the bioeconomy;
- Climate action, environment, resource efficiency and raw materials;
- Europe in a changing world inclusive, innovative and reflective societies;

We identified user stories which directly or indirectly address some of the societal challenges which are outlined in Horizon 2020 strategy documents. We also took into account the user stories from (van Egmond et al. 2019) earlier DiSSCO findings from the ICEDIG project. The user stories are summarized as follows.

Health, demographic change and wellbeing

Occurrence data of virus/bacterial disease vector species (mosquitoes, bats, etc.) can be obtained from collection databases to support control of zoonotic diseases. Comprehensive, connected collection management systems can make remote working easier for researchers, minimizing the risks associated with pandemics. Biodiversity data from collections can be linked to health data so that health impact of variables such as vegetation cover, deforestation or species diversity can be modelled. Future distributions of allergenic species can be modelled by linking collection and occurrence data with e.g., climate data/environmental data, helping to predict and mitigate health problems arising from allergies. Collection-based research can support ethnobotanical research, as seen in an investigation of natal diets (de Boer & Lamxay 2009).

Food security

Genomic data from collections can be used to analyse food plant diseases, see Essakhi et al's study of Phaeoacremonium species (hyphomycetes fungi) and their association with esca disease in cultivated grapevines (e.g. Essakhi et al. 2008). Specimens can support the identification, conservation and use of crop wild relatives. They can also provide occurrence and associated environmental data which can contribute in investigating genetic control of agriculturally relevant traits in crop wild relatives.

Locating the origin of food pest species and modelling their future distribution by e.g. linking occurrence data with climate data. Support crop diversification and green infrastructures to increase sustainability of farming practices, investigate genetic control of agriculturally relevant traits in crop wild relatives.

Inclusive, innovative and reflective societies

Digital species information such as images, trait descriptions, etc., can help citizen scientists to identify species and facilitate citizen science projects. Digitally opening up natural history collections for education and public knowledge can facilitate engagement with underrepresented citizen groups in citizen science. Runnel et al. (2019) studied the role of natural history collections in improving the digital skills of citizens.

In natural history museum educational programs, the use of digital content (including digitized specimens) was considered underdeveloped with a high potential for increased use and effectiveness (Runnel et al. 2019). They propose that enhancing data search and building public interfaces for collection digital content could lead toward more effective use of natural history digital content in society and broader acknowledgment of the value of natural history collections. Including citizen scientists in museum-based citizen science projects (particularly digitisation tasks) can also lead to involvement of participants in decision-making regarding environmental topics in society (Runnel et al. 2019). As implied by Runnel & Wijers (2019), citizen science attribution in crowdsourcing project outcomes needs to be improved, often the published data lacks the information about citizens involvement .

Private natural history collections are historically and practically an important part of biological research. In some cases, private collections are donated to museums or other collection holding institutions, but often their scientific value is lost due to loss or deterioration of the collections. If private collection holders are invited to share the specimen data, the impact to science will be achieved quicker and also the handling of collections in case of donations will me much smoother. Opening collection data management systems to private collectors can also put greater emphasis on the value of citizen science and its part in academic research. Willemse et al. (2020) analysed the perspective of private collectors and proposed tools and recommendations for the DISSCO consortium.

Climate action, environment

Well-documented natural history collections can be of great value for climate change research (Johnson et al, 2011). Access to historical data of species distributions, abundance and habitats can help to understand climate change. Metadata (sampling methodology, etc.) is crucial for specimen data useability and applying statistical approach. Easy and comprehensive data access can also facilitate innovative data solutions for visualisation of species loss and environmental degradation and have an impact on policy making. Digital specimen data will allow aggregation of specimen data to other data types, such as climate and weather data and land-use data will allow new types of analysis serving e.g. climate change mitigation at ecosystem level. Digital specimen trait data can be used to study links between species morphology and climate change (Salinas-Ramos et al, 2020).

05 RECOMMENDATIONS AND LINKS TO OTHER WORK PACKAGES

The use cases and functional demands can help prioritize developments in the Technical Work Packages of DiSSCo Prepare. All identified use cases were imported into GitHub, the main repository for technical developments in DiSSCo Prepare and related projects (DiSSCo/user-stories). Therewith, they are easily accessible for the developmental teams and can be taken into consideration when setting up developmental plans for the DiSSCo technical architecture, the prioritization of services and setting up or shaping pilots in DiSSCo Prepare.

The results of WP 1 provide a valuable resource for WP 3, which develops the specifications for a digital maturity self-assessment tool in task 3.1. The analysis of user stories of WP1 may indicate areas where digital maturity of consortium members will be needed to underpin the success of the DiSSCo services. Furthermore, it has to be presumed that any assessment referring to actual user needs potentially experiences a higher acceptance during implementation. In a first attempt to identify areas that provide information about digital maturity a subset of 127 user stories from WP1.2 were categorized and described in a similar approach as the one adopted to identify functional demands. As a first result, a non-exhaustive list of areas to be covered was derived from the dataset. According to this interpretation of user needs the following areas are of primary interest and should therefore be considered, when assessing digital maturity of institutions or infrastructure.

- Availability of data at collection and specimen level
- Data standards and quality assurance
- Licensing
- Open data policies and processes (links to WP2)
- Availability of data types e.g. 3D
- Progress of digitisation, plus workflows, best practices, etc.
- Infrastructure including collections management systems
- Persistent identifiers
- Analytics and monitoring
- Availability of tools and processes e.g. annotation, transcription, AI, etc.

It is planned to extend the analysis of WP3 to the whole set of user stories and to take the functional demands categories and sub-categories into account. This would lead to a higher degree of standardization. However, it has to be evaluated, if the functional demands define useful categories for the specifications of a digital maturity assessment tool.

For the development of "Common resources and standards" (DiSSCo Prepare WP5) the following recommendations should be taken into account:

DiSSCo Knowledgebase (Task 5.1): Identified functional demands should contribute to the content in the <u>DiSSCo Knowledgebase</u>. Here, e.g. compilation of necessary (meta) data standards on object and collections level should be available, relevant policies should be presented and described (ongoing collaboration with Task 7.3 DiSSCo Policies), and available tools to address user needs should be listed and instructions need to be given. In addition, reporting on collections-based research but also use cases from other stakeholder groups could be documented here.

Not all identified functional demands are directly linked to DiSSCo's central architecture (Core Digital Object) but rather to services and products (e.g. for data publication, reference systems) linked to it. The starting Task "Technical infrastructure for science data mobilisation and publication" (Task 5.4) need to consider the identified requirements for development plans of e.g. <u>Catalogue of Life</u> and <u>GeoCASe</u>.

The development of "Technical Architecture and Service Provision" (DiSSCo Prepare WP6) should consider the identified functional demands, translate them into a more technical language, and use them for prioritization in the technical development of the architecture. For example the list of required tools for end users (compare Table 1) should be harmonized with current concepts of the DiSSCo RI. However, not all services and tools might be a necessary development under DiSSCo and we recommend WP6 partners to make clear which tools and services are already available or planned in associated RI (Task 6.4 "Embedding Embedding DiSSCo in the technical landscape").

The use cases and functional demands will directly contribute to Task 6.1 "CMS systems interoperability and harmonisation". Within this task, which involves harmonization, specifications and agreements for local collection facilities to achieve interoperability with DiSSCo's emerging core infrastructures, a modeling framework adopting the <u>EventStorming format</u> was created to capture main events in the life cycle of a Digital Extended Specimen (DES). Based on a lightweight common description model - "a command causes an event, which can lead to a reaction" - more formal representations of DES-related processes and activities like initial digitization, assignment of PIDs, further (sub)sampling for genomic analysis or taxonomic revisions were developed.

These representations will now be used in the context of Task 6.1 for the implementation of event data in a common specification like <u>CloudEvents</u> to provide interoperability across DiSSCo-linked services, platforms and systems, but should also be connected to corresponding use cases and user stories. Aim is the establishment of a common notation to gain a unified understanding of needs as well as "responding" technical solutions following the aforementioned "Command -> Event -> Reaction" scheme. The utilization of such a unified and consistent framework for requirements, objectives and services will substantially support the full implementation of the DiSSCo service architecture.

In addition, the DiSSCo system design should anticipate future reporting on impact metrics: consistent, ongoing categorisation of collection usage/data access requests and the implementation of data quality controls on downstream research output metadata such as peer-reviewed publications will facilitate linkages to existing data sources in the wider scholarly publications ecosystem, improving the reliability and usefulness of impact metrics.

Data integrity and interoperability would be improved by incorporating existing, discipline-specific digital services in the development of further digital collection systems. For example, incorporating vocabularies derived from taxonomic name lookup and resolution services such as the <u>GBIF Species</u> <u>API</u> would make reporting on life sciences collection access requirements more efficient, granular and

repeatable. It would also facilitate identification of data gaps and feed into transnational digitisation prioritisation and planning.

The use of more standardised data and related system linkages will also support the creation of visual analysis and decision-making tools such as dashboards: if such interfaces are to be intuitive and understandable by stakeholders external to the natural sciences community, collection usage and impact data must be optimised suitable for high-level aggregation and visualisation.

Data from in-person access schemes (like Transnational Access in SYNTHESYS) can be used as a benchmark from which we can assess progress towards increased engagement by under-represented groups. If remote access to equivalent collection data and services overcomes barriers to inclusion, this should be measurable in changes to the demographic profile of the user base. This type of datadriven service design would require demographic data on system end-users to be recorded, where appropriate. More inclusive categories of complex demographic variables such as gender identity should also be incorporated: if these are not in the data, the engagement and scientific impact of these groups cannot be measured, reported on or incorporated into ongoing system design and development activities.

In order to track and better understand our users and how they need/want to use our facilities in the future, we should consider providing solutions for the following: (i) Enabling scientific excellence, (ii) Delivery of education and training, (iii) Enhancing transnational collaboration in Europe, (iv) Facilitating economic activity, (v) Outreach to the public, (vi) Optimising data use, (vii) Provision of scientific advice, (viii) Facilitating international co-operation, and (ix) Optimising management.

Many tools and services are already available and meet at least partly the requirements of known and new users of Natural Science Collections. However, there is still potential for improvement, especially in linking services from different RI and making tools interoperable. The DiSSCo RI need to accept this challenge and provide solutions for use cases identified and described in this deliverable report. Especially those which require more than only one functional demand and those which can only contribute to our societal challenges with a comprehensive set of services linked to our Natural Science Collections.

06 REFERENCES

de Boer, H. & Lamxay, V. (2009). Plants used during pregnancy, childbirth and postpartum healthcare in Lao PDR: A comparative study of the Brou, Saek and Kry ethnic groups. J. Ethnobiology Ethnomedicine **5:** 25. <u>https://doi.org/10.1186/1746-4269-5-25</u>

Borsch, T., Stevens, A.-D., Häffner, E., Güntsch, A., Berendsohn, W.G., Appelhans, M.S., Barilaro, C., Beszteri, B., Blattner, F.R., Bossdorf, O., Dalitz, H., Dressler, S., Duque-Thüs, R., Esser, H.-J., Franzke, A., Goetze, D., Grein, M., Grünert, U., Hellwig, F., Hentschel, J., Hörandl, E., Janßen, T., Jürgens, N., Kadereit, G., Karisch, T., Koch, M.A., Müller, F., Müller, J., Ober, D., Porembski, S., Poschlod, P., Printzen, C., Röser, M., Sack, P., Schlüter, P., Schmidt, M., Schnittler, M., Scholler, M., Schultz, M., Seeber, E., Simmel, J., Stiller, M., Thiv, M., Thüs, H., Tkach, N., Triebel, D., Warnke, U., Weibulat, T., Wesche, K., Yurkov, A. & Zizka, G. (2020). A complete digitization of German herbaria is possible, sensible and should be started now. Research Ideas and Outcomes **6**: e50675. https://doi.org/10.3897/rio.6.e50675

Cech, E. A. & Blair-Loy, M. (2019). The changing career trajectories of new parents in STEM. Proc. Natl Acad. Sci. USA **116**: 4182–4187. <u>https://doi.org/10.1073/pnas.1810862116</u>

DiSSCo user-stories (2021). DiSSCo/user-stories: Collection of user stories describing evolving requirements of stakeholders involved in managing and using natural science collections. GitHub, <u>https://github.com/DiSSCo/user-stories</u>, last accessed 2021-04-01.

van Egmond, E., Willemse, L., Paul, D., Woodburn, M., Casino, A., Gödderz, K., Vermeersch, X., Bloothoofd, J., Wijers, A. & Raes, N. (2019, March 31). Design of a Collection Digitisation Dashboard (Version 1.0). Zenodo. <u>http://doi.org/10.5281/zenodo.2621055</u>

ESFRI (2019). Report of the ESFRI Working Group on monitoring RIs performance | www.esfri.eu. <u>https://www.esfri.eu/latest-esfri-news/report-esfri-working-group-monitoring-ris-performance</u>

Essakhi, S., Mugnai, L., Crous, P.W., Groenewald, J.Z. & Surico, G. (2008). Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia **21:** 119–134. <u>https://doi.org/10.3767/003158508x374385</u>

Fitzgerald, H., von Mering, S., Juslén, A., Petersen, M., Berger, F., von Bonsdorff-Salminen, T., De Smedt, S., Figueira, R., Frank, J., Häffner, E., Haston, E., Islam, S., Järvi, J., Livermore, L., Loo, T., Mergen, P., Raes, N., Runnel, V., Schulman, L., Semal, P. & Vincent, S. (2021). Compilation of use cases and user stories, functional demands and their analyses for the RI DiSSCo – DiSSCo Prepare Tasks 1.1 & 1.2. [Dataset]. Data Publisher: Museum für Naturkunde Berlin (MfN) - Leibniz Institute for Evolution and Biodiversity Science. <u>https://doi.org/10.7479/17qp-ge55</u>

Galili, T. (2015). dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics **31**: 3718–3720. <u>https://doi.org/10.1093/bioinformatics/btv428</u>

Johnson, K.G., Brooks, S.J., Fenberg, P.B., Glover, A.G., James, K.E., Lister, A.M., Michel, E., Spencer, M., Todd, J.A., Valsami-Jones, E., Young, J.R., Stewart, J.R. (2011). Climate Change and Biosphere Response: Unlocking the Collections Vault. BioScience 61: 147–153. https://doi.org/10.1525/bio.2011.61.2.10

Krishtalka, L. (2016). Accelerating the discovery of biocollections data. Copenhagen: GBIF Secretariat. Available online at: <u>http://www.gbif.org/resource/83022</u>

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner H. (2020). vegan: Community Ecology Package. R package version 2.5-7. <u>https://CRAN.R-project.org/package=vegan</u>

Raes, N. (2021). R-script used for analysis of user stories and functional demands. GitHub <u>https://github.com/DiSSCo/user-stories/blob/17315c736931a5c8ce6fb1837f143a7ca6e07658/Raes-</u> <u>N_DPP_T1-1_T1-2.R</u>

Runnel, V., Hardy, H., Sanghera, H., Robinson, L., Shennan, V., Livermore, L. & De Smedt, S. (2019). Natural history collections and digital skills of citizens. Zenodo. <u>https://doi.org/10.5281/zenodo.3364541</u>

Runnel, V. & Wijers, A. (2019). Improving the detection of collection-based citizen science projects. Zenodo. <u>https://doi.org/10.5281/zenodo.3364519</u>

Salinas-Ramos, V.B., Agnelli, P., Bosso, L., Ancillotto, L., Sanchez-Cordero, V., Russo, D. (2020). Body Size Variation in Italian Lesser Horseshoe Bats Rhinolophus hipposideros over 147 Years: Exploring the Effects of Climate Change, Urbanization and Geography. Biology (Basel). **10:** 16. <u>https://doi.org/10.3390/biology10010016</u>

Societal Challenges, Horizon 2020. European Commission. Available online at: <u>https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges#Article</u>

Vissers, J., Van den Bosch, F., Bogaerts, A., Cocquyt, C., Degreef, J., Diagre, D., De Haan, M., De Smedt, S., Engledow, H., Ertz, D., Fabri, F., Godefroid, S., Hanquaert, N., Mergen, P., Ronse, A., Sosef, M., Stévart, T., Stoffelen, P., Vanderhoeven, S. & Groom Q. (2017). Scientific user requirements for a herbarium data portal. PhytoKeys **78**: 37–57. <u>https://doi.org/10.3897/phytokeys.78.10936</u>

Willemse, L., Runnel, V., Saarenmaa, H., Casino, A. & Gödderz, K. (2020). Digitisation of private collections. Zenodo. <u>https://doi.org/10.5281/zenodo.3598303</u>

07 APPENDICES

Appendix 1. Table of user story compilations from previous projects and other source documents

Appendix 2. Use cases and functional demands tables

Appendix 3. SYNTHESYS Transnational Access Analysis

Appendix 4. Target Groups for additional surveys and interviews

Author(s) (publication year)	Title	URL
van Egmond, E., Willemse, L. & al.	Design of a Collection Digitisation	https://icedig.eu/sites/default/files/deliverable_d2.3_icedig
(2019)	Dashboard	_design_of_a_collection_digitisation_dashboard_v1.0.pdf
Raes, N. (2019)	DiSSCo user stories collection	https://dissco.teamwork.com/#/files/8287666
Raes, N. (2019)	DiSSCo user stories presentation	https://dissco.teamwork.com/#/files/8146993
Collection Description Interest		https://docs.google.com/spreadsheets/d/1SsfwogZ88TgouDJ7EoDqXJFol-
Group (2020)	Use Case Analysis	eVs7aYdFx504qJNzc/edit#gid=0
Collection Description Interest		
Group (2020)	Use Cases	https://github.com/tdwg/cd/tree/master/reference/use_cases
	User stories for SYNTHESYS Plus	https://docs.google.com/spreadsheets/d/1weWdM_5wCAdr49-rH-
Anonymous (2020)	T2.2 dashboard	8c5fgOrTTb8yYwnHsGpCw_oMo/edit#gid=2125639734
		Example of species page:
		https://www.mindat.org/min-4322.html
inspired from CETAF Earth		GeoCase Portal
Sciences group discussions (2020)	User story for geological specimens	http://www.geocase.eu/access
	ordered user stories incl. ICEDiG	
DiSSCo user stories (2020)	Survey and ELViS Survey user stories	https://github.com/DiSSCo/user-stories/projects/1
TDWG CD user cases	use cases for collection descriptions	https://github.com/tdwg/cd/tree/master/reference/use_cases
Addink W., Belknap G. & al.		
(2017)	DiSSCo Design Study Report	unclear where published but study is known to the community
	A complete digitization of German	
	herbaria is possible, sensible and	
Borsch & al. (2020)	should be started now	https://riojournal.com/article/50675/
Vissers, J., Bosch, F. van den & al.	Scientific user requirements for a	
(2017)	herbarium data portal	https://phytokeys.pensoft.net/article/10936/
	Access to Geosciences – Ways and	
Petersen, M., Hoffmann, J. &	Means to share and publish	
Glöckler, F. (2019)	collection data	https://riojournal.com/article/32987/
Krishtalka L., Dalcin, E. & al.	Accelerating the discovery of	
(2016)	biocollections data	http://www.gbif.org/resource/83022

Appendix 1. Overview of existing user surveys, presentations, and other sources collaboratively collected by project partners.

Appendix 2. Use cases and functional demands Earth science

ID	CAT	AS (POSITION)	I WANT TO	SO THAT I	FOR THIS I NEED	FUNCTIONAL DEMAND 1	FUNCTIONAL DEMAND 2	FUNCTIONAL DEMAND 3	FUNCTIONAL DEMAND 4	FUNCTIONAL DEMAND 5
316	1	Association	to gather information to have overall figures representative of partners' state-of-the-art	I can showcase the relevancy of the collections held to policy makers and attract funds	high-level figures that feature the collections as a whole	collection	Legal and policy framework	Tools for reporting & statistics		
317		Citizen Science (CS) site manager	select multiple images	I can build a CS project	information on the basic elements of the images	Images	Metadata			
318		Citizen scientist	be recognized as contributor	I can apply for funding to digitize my own collections	contribution indicators (as contributor)	Tools for reporting & statistics				
319		Citizen scientist	be recognized as contributor	l can identify my contribution on validating data from external sources	contribution indicators (as validator)	Tools for reporting & statistics				
320		Citizen Scientist	curate and add untranscribed labels	I can contribute to the overall project, perhaps especially on particular group of fossils/rocks etc.	a curation interface	Annotation tools				
321		Citizen Scientist	find specific info	I can use it in blogs, publications, etc.	metadata and photo's	Metadata on record level				
322		Citizen scientist	help with transcribing	I can enjoy this voluntary work	images without transcription	2D images	Label images			
323		Citizen Scientist	identify a geological or palaeontological specimen	l know which rock, mineral, gem or fossil I have encountered	an automated identification tool	Tools for identification				
324	1	Citizen scientist	know where was a certain collector on a certain day	l can help transcribe a specimen	existing transcription of specimens collected around the same time by the same collector	Advanced search functionality	Metadata on record level			

325	1	scientist	be recognized as	I can apply for funding to	contribution	Tools for			
			contributor	digitize any collection of	indicators (as	reporting &			
				special interest for research	contributor/validator)	statistics			
326	1	Scientist	check that the transcribed	I can confirm collection	digital images of	Label images			
			label data corresponds to	details	specimen labels				
			the actual label						
			information						
327	1	Scientist	check the identity of the	I can confirm the	digital images of	2D images	3D images		
			specimen	identification	rocks/minerals/fossil				
					species				
328	1	Scientist	do biographical research	I can contribute to cultural	names of collectors	Data	Metadata on	Advanced	
			on specific collectors	history (e.g. colonial	and places of origin of	integration	record level	search	
				history)	specimens			functionality	
329	1	Scientist	download a collection of	I can use them as inputs for	a method to query	Tools for	2D images		
			images with a resolution of	training a neural network	and download image	downloading			
			400 dpi in jpeg 2000	designed to classify similar	collections according	data/metadat			
			format	images	to a set of parameters	а			
330	1	Scientist	expose the collection I am	l can collaborate with other	an overview of	Metadata on			
			contributing to other	users on new science using	existing collection(s)	collection			
			users, according to the	the collection	with standard	level			
			FAIR principles		descriptions				
331	1	Scientist	extract data on presence	I can easily choose and loan	database on presence	Metadata on			
			and storage of all collected	material for scientific work	and storage of	collection			
			specimens of		specimens of	level			
			rocks/minerals of my		rocks/minerals and				
			present interest and		host institution				
			details of loan process at		information on loan				
			insitutions that host the		process				
			material						
332	1	Scientist	find all literature citing a	I can recontruct the history	links between	Data	Advanced		
			specimen	of its classification	specimens and	integration	search		
					literature		functionality		

333	1	Scientist	find an image of a	I can allow journalists to	images available with	2D images	Advanced		
			rock/mineral etc. to put in	write an article on my	preferably very open		search		
			a press release	paper	CC licence		functionality		
334	1	Scientist	find and reuse digital	I can use all digital	fast access to the	Advanced			
			specimens from DiSSCo	specimens of a selection of	DiSSCo infrastructure	search			
				rocks/minerals/fossil		functionality			
				species from DiSSCo for					
				scientific research					
335	1	Scientist	find out if a collection	I can study the specimens	collection level data	Metadata on			
			holds specimens of		to make estimations	collection			
			interest		about holdings data	level			
336	1	Scientist	find out if there are	l can include different	a reference to related	Data	Advanced		
			additional images available	views of a specimen in a	images for a	integration	search		
			from a particular specimen	written report	particular specimen		functionality		
337	1	Scientist	find out if there is an	I can select the appropriate	a reference to the	Data	Advanced		
			alternative image available	image for including in a	alternative image	integration	search		
			with a resolution of 300	paper according to the	formats available		functionality		
			dpi and in png file format	publisher requirements					
338	1	Scientist	find out what is in the	I know whether its	A high level	Metadata on	Tools for		
			collection but not been	available for me to use	description of the	collection	reporting &		
			digitised		collection	level	statistics		
339	1	Scientist	find specimens that have	I can analyze past genetic	ancient DNA from	Molecular	Metadata on		
			DNA data	diversity from subfossil	collection specimens	data	record level		
				remains					
340	1	Scientist	find whether images	I can use the images as	extensive and	2D images	3D images		
			available at institutional	surrogates for specimens,	standardized				
			repositories are of	to reduce specimen travel	metadata on the				
			taxonomic-grade	and associated risks	image including				
					photogrammetric				
					data				

341	1	Scientist	generate an artificial intelligence (AI) algorithm based on a selection of geological specimens	I can run the algorithm on images of other institutes to verify identifications and recover further specimens	an Al toolbox to generate the Al algorithm	Tools for identification	Tools for data analysis		
342	1	Scientist	know all rocks/minerals/fossils (of a particular group) in an area	l can make a checklist	all collections by specific region	Metadata on collection level	Metadata on record level		
343	1	Scientist	know legal procedure and limits for loan of collection material and transport limits regarding dangerous goods for countries that host material	simplicity of loan procedure	transport procedures	Legal and policy framework			
344	1	Scientist	know the quality of the data provided	l can incorporate it into an analysis	it's up to date and certified (to some degree) by the institution publishing the data	Tools for data analysis			
345	1	Scientist	know where the specimens are kept in the collection	l can find them in the collection	to know the number of the boxes where the specimens are kept	Metadata on collection level	Tools for reporting & statistics		
346	1	Scientist	measure the geological or palaeontological specimen	I can compare the measurements and use them in publications	a scale/ruler in the digital image or a measurement tool for the image	Tools for identification	Tools for data analysis		

347	1	Scientist	query when and where one or more fossil species or rocks/minerals etc. have been recorded, and their characteristics, and the institutions that archive specimens	I can use more geological/palaeontological specimens, or borrow collections from other institutes	Taxonomic fields or geological classification, geographic coordinates, date of collection	collection	Advanced search functionality		
348	1	Scientist	read untranscribed label data	I can add specimen details to the record	digital images of specimen labels	2D images	Label images		
349	1	Scientist	retrieve the licensing information of an image	I know if I can use the image I want to include in a paper	a reference to the		Digital representatio n of specimens		
350	1	Scientist	to find type specimens (of a fossil species or a mineral)	I can verify and understand its characteristics	to be sure this name is understood uniformerly	Advanced search functionality	Data integration		
351	1	Scientist	verify the validity of a determination by inspecting the type material for that mineral / fossil	I can confirm the valid identity of a mineral / fossil	high quality images with different views (dorsal, ventral, detail shots etc) and the metadata for the type specimens	2D images	3D images	Tools for identification	
352	1	Scientist	visit a collection and annotate additional information of specimens through an Unified Curation and Annotation System (UCAS)	I can capture information on geographical coordinates, locality, scientific name, accession number, collector name, and relevant measurements of specimens	a CMS independent annotation system		Interoperabili ty	Data integration	
353	1	Scientist	what kind of specimens you have in your collections	I can get specimens on loan	access to a loan portal	search	Metadata on collection level	Metadata on record level	

354	2	Citizen	add label information to	I can contribute to scientific	access to the DiSSCo	Advanced	Annotation		
		Scientist	the specimen records	data	portal	search	tools		
						functionality			
355	2	Citizen	help characterizing the	l can enjoy	images of storage	Metadata on			
		scientist	collection		units without	collection			
					transcription	level			
356	2	Citizen	help transcribe specimens	l can enjoy	images of specimens	2D images	3D images	Annotation	
		scientist			without transcription			tools	
357	2	Citizen	keep track of my records	I can focus on creating	public, easily	Reference	Interoperabili	Data	
		Scientist	and corresponding	reliable records	understandable data	system &	ty	integration	
			samples in a way that		formats, tools for	Standard lists			
			makes donating the		creating labels with				
			specimens to a local		unique IDs, and a				
			museum painless to all		public DB system that				
			parties		can link sample IDs to				
					occurence data				
358	2	Citizen	know where a certain	I can help to transcribe a	an existing	Advanced	Metadata on		
		scientist	collector was on a certain	specimen	transcription of a	search	record level		
			day		specimen that was	functionality			
					collected around the				
					same time by the				
					same collector				
359	2	Citizen	read (handwritten)	I can add specimen details	digital images of	Label images	Tools for		
		Scientist	untranscribed label data	to the record	specimen labels		annotation		
360	2	Collection	analyse the uniqueness of	I can communicate its value		Metadata on	Metadata on		
		manager	the institutional collection		collection with data	collection	record level		
					on collections from	level			
					other institutes				
361	2	Collection	be able to access	I can optimise the storage	access to	Metadata on			
		manager	information about storage	•	storage/status	collection			
				plan for future acquisitions	information of	level			
			specimens		specimens				

362	2	Collection manager	categories are kept	information to a collection holder, I can forward a collection on offer to an institute that is interested	geography and possibly wish lists for certain specimens	Metadata on collection level			
363	2	Collection manager	connect a researcher to colleagues	they can examine more collections	institute holds specific	Metadata on collection level	Data integration		
364	2	Collection manager	encourage remote curation of my collection through expert annotation	I can improve the curation and value of the collection	to receive and be able to easily incorporate annotated data	Tools for annotation			
365	2	Collection manager		I can rest assured that nobody hacks the system, illegally modifies or extracts data	security during the	Data security			
366	2	Collection manager	know which users are interested in which data	I can meet the needs of as many users as possible		Tools for reporting & statistics			
367	2	Collection manager		I can understand the use of the collection and give evidence of its importance	to track specimen identifiers and their	Tools for reporting & statistics			

368 369	2	manager	start a digitizing project	I can show the importance of the collection I can digitize a certain group of my collection, can do this internationally because of funding	collection within the DiSSCo collection to know where else there are collections	Metadata on collection level Metadata on collection level	Tools for reporting & statistics		
370	2			l can make information available useful, and develop collections effectively	researchers need	Metadata on collection level	Tools for clustering requests		
371	2		know the situation with collection amounts	I can plan ahead for future storage needs		Tools for reporting & statistics			
372	2		add annotated information from an Unified Curation and Annotation System (UCAS) to my collection management system (CMS)	I can update infomation on my specimens in my CMS	interoperability between my CMS and UCAS	•	Tools for uploading	Annotation tools	
373	2		annotate all aspects of records, suggest improvements, and record logical connections between records	l can provide duplicate- free, reliable, well- documented data to end users	an record-level annotation and communication system spanning across institutes	Annotation tools	Tools for data analysis		

374	2	Curator	annotate digital specimens	I can improve the curation	to be able to	Annotation	Images	Interoperabili		
			with updated	of the collection	annotate a digital	tools		ty		
			determinations		specimen and pass					
					that to the curating					
					institute					
375	2	Curator	answer multiple requests	I can follow conversation	communication	Advanced	Tools for			
			on a specified group of	about a request	thread by rock type	search	clustering			
			rocks, minerals / collector		etc. / collector /	functionality	requests			
			/ geographic area		geographic area					
376	2	Curator	answer requests for	I can search the collection	to receive requests	Metadata on				
			specified objects	and pull material	including all	record level				
					rock/mineral names					
					involved					
377	2	Curator	attach and deliver	l can retrieve specimens	a portal compatible or	Tools for data	Biochemical	Data	Tools for	
			geochemical data to rock	based on their geochemical	similar to the Earth	discovery	or	integration	uploading	
			and mineral specimen	signature	Chem portal funded		geochemical			
			records		by NSF		data			
					http://www.earthche					
					m.org/					
378	2	Curator	be recognised as	I can apply for funding to	contribution	Tools for				
			contributor	digitise institutional	indicators (as	reporting &				
				collections	contributor)	statistics				
379	2	Curator	check that the transcribed	I can confirm collection	digital images of	Label images				
			label data corresponds to	details	specimen labels					
			the actual label							
			information							
380	2	Curator	compare an unidentified	I can identify the specimen	digital images of	2D images	Annotation	Tools for		
			specimen with identified		specimens		tools	identification		
			specimens to determine							
			their identity							
381	2	Curator	cross-check data between	I can confirm that all	to select all DiSSCo	Metadata on	Tools for geo-	Advanced		
			specimens collected by the	specimens have similar	records by collector	record level	referencing	search		
			same collector on the	geographical coordinates,	and date			functionality		
			same day	or correct coordinates						
				where necessary						

382	2	Curator	curate a digital specimen	my collection management	direct access to my	Tools for data	Advanced	Annotation		
			(as it enters the DiSSCo	system (CMS) has curated	digital specimens	discovery	search	tools		
			data infrastructure)	specimens	from the DiSSCo		functionality			
					infrastructure					
383	2	Curator	discover the type status of	I know how many type	digitised information	Advanced	Data			
			specimens	specimens are in the	on the description of	search	integration			
				institutional collection	species	functionality				
384	2	Curator	enrich my collection with	I can increase the value of	a quality / reliability	Annotation				
			reliable annotation from	my collection	rating of annotators	tools				
			specialists anywhere in the							
			world							
385	2	Curator	images (old or modern	I can make the accurate	These images are	Tools for	2D images	Interoperabili	Data	
			photos or drawings of the	identification	extracted from the	identification		ty	integration	
			complete specimen or of		original publications					
			any microscopic technique		or requested from					
			applied on it)		their authors and					
					stored					
386	2	curator	monitor and in specific	I can stop ruthless	a possibility to	Tools for	Advanced			
			cases restrict access to	exploitation of fossils,	personally evaluate	limiting	search			
			geographical coordinates	certain minerals or	every request for a	access to	functionality			
			of collection sites	sensitive sites	combination of	data				
					certain data					
					categories, and the					
					possibility to modify					
					the answer to a data					
					request					
387	2	Curator	publish my data online	I can increase the value of	a user friendly	Tools for	Advanced			
				the collection	collection	uploading	search			
					management system		functionality			
202					(CMS)		A 1			
388	2	Curator	read untranscribed label	I can add specimen details	digital images of	Label images	Annotation			
			data	to the record	specimen labels		tools			

200	2	ourstor	rolato estalogue purchare	Loop actimate and present	databasa with	Data	Tools for			
389	2	curator	relate catalogue numbers	I can estimate and present		Data				
				scientific value of my	catalogue numbers of	integration	reporting &			
			collection to published	collection	the specimens and		statistics			
			scientific papers where		the references of all					
			they have been used		scientific papers					
					where they have been					
					used					
390	2	Curator/collec	increase the collections	l can motivate	specialized personnel	Metadata on				
		tions manager	visibility for the general	amateurs/citizen scientists	to present parts of	collection				
			public	based on the value of	the collection in a	level				
				diversity	story telling, yet					
					scientifically sound,					
					manner					
391	2	Digitisation	ensure digitisation serves	I can make effective use of	to know what	Advanced	Tools for			
		officer	research needs	resources	researchers require	search	clustering			
						functionality	requests			
392	2	Digitisation	produce digital specimens	I can store a specimen in	an automated	2D images	Label images	Interoperabili	Tools for	
		officer	from a digitisation line	my collection management	workflow minting			ty	uploading	
				system (CMS)	persistent identifiers					
					(PIDs)					
393	2	Digitization	link specimen & label	I can make the images as	a (semi)automatic	Data	Label images			
		officer	images the corresponding	publicly visible and usable	label data extraction	integration				
			occurence data	as possible	& verification system	_				
394	2	Director	hire a curator with	I can be sure they have a	collection types,	Metadata on				
			knowledge of specific	background that includes	importance of	collection				
			groups	knowledge of the main	collection gauged by	level				
				collection	size, scope, and time					
					period of collection					
L								1		

395	2	Director	know how much my institution's collections is used and for what	I can argue for the importance of my institution's collection	to be able to extract information from DiSSCo based on # of views/downloads/ann otations etc. of my collection	Tools for reporting & statistics	Legal and policy framework	Tools for downloading data/metadat a	collection	Annotation tools
396	2	Historian	find information on the history of objects and collections	I can study the historical context of collections and objects	historical data, like previous owners, links with other objects, data of arrival in collection, previous ownership etc.	Metadata on collection level	Metadata on record level			
397	2	Scientist	compare an unidentified specimen with identified specimens to determine their identity	I can identify the specimen	digital images of specimens	2D images	Annotation tools	Tools for identification		
398	2	Scientist	correct an identification and add an annotation	I can file the specimen under the correct taxonomic name	digital images and an annotation system	Annotation tools	Tools for identification			
399	2	Scientist	cross-check data between specimens collected by the same collector on the same day	I can confirm that all specimens have similar geographical coordinates, or correct coordinates where necessary	to select all DiSSCo records by collector and date	Advanced search functionality	Metadata on record level	Tools for geo- referencing		
400	2	Scientist	cross-check data between specimens of the same rock/mineral etc.	I can flag outliers and correct record data where necessary	to select all DiSSCo records from a certain rock/mineral etc.	Advanced search functionality	Annotation tools			
401	2	Scientist	extract handwriting samples of a collector	I can verify collection localities and collection dates of specimens of a collector	to select all digitized labels from a specific collector	Advanced search functionality	Label images			

402	3		reference (training data set) build and provide solutions and related services	I can train my algorithms for automatic identification I can provide services to curators so that they can work better and easier with their collections at less financial costs	group (validated) information on volumes, locality	collection level Tools for reporting &	Tools for identification Metadata on collection level	Tools for data discovery	
404	3	Software developer	the data and ways to add to the data, through apps or web interaction	data is more accessible to the masses and different collections can be, for instance, cross-referenced. At the same time additional data can be added and fed back into the core databases. Geographic location will be involved as every man has GPS access today. The vantage point to access these 'big data' sources could be educational, entertaining, medical, historical and natural sciences		Data integration	Metadata on collection level	Advanced search functionality	Annotation tools
405	3	Solution provider	tap into the vast market of digital storage solutions for digital natural collections	I can sell my services and consult	on collection type,	Metadata on collection level	Tools for reporting & statistics		

406	4	Association	to gather information to	we can showcase the	high-level figures that	Metadata on	Legal and	Tools for	
				relevance of the collections		collection	policy	reporting &	
			representative of partners'	to policy makers and	collections as a whole	level	framework	statistics	
				attract funds					
407	4	Collection	know what the situation is	I can plan for new space/	I need to know	Tools for	Metadata on		
		manager,	regarding collection size	storage needs	existing size of	reporting &	collection		
		Director,			collections, and	statistics	level		
		Administrator			amount of new				
					material coming in.				
					Also, I need to know				
					the status/ condition				
					(e.g. wet, dry) of				
					existing material and				
					collection health				
					information				
408	4	Director	know the extent of the use	I can take informed	metrics of the use of	Tools for	Metadata on	Legal and	
			of the organisation's	executive decisions related	collections	reporting &	collection	policy	
			collections across societal	to future investments (both		statistics	level	framework	
			sectors	collections and HRs)					
409	4	Director	to be able to underline the	I can help policy makers	details of collections	Tools for	Metadata on	Legal and	
				understand the	and related research	reporting &	collection	policy	
			sciences and of scientific	consequences of their		statistics	level	framework	
				policies					
			understanding it						
410	4	Director	understand the	I can explain the scientifc	information on	Tools for	Metadata on		
			relationship of our own	value and unicity of our	collection type, size	reporting &	collection		
			collection to the	collection to policy makers	and taxonomic	statistics	level		
			collections of other		breadth of other				
			institutions in our country		institutes				

411	4	Director /	know what makes our	I can effectively	Collection types, with	Metadata on	Tools for	Advanced	Metadata on	Data
		administrator	collection unique	advertise/highlight the	size, locality scope,	collection	reporting &	search	record level	integration
				collections to improve	time, taxonomic	level	statistics	functionality		
				usage	scope, important					
					collectors					
412	4	Policy maker	find and reuse digital	I can confirm the presence	fast access to the	Advanced	Legal and			
			specimens from DiSSCo	of a rock/mineral etc. for	DiSSCo infrastructure	search	policy			
				legal purposes		funcionality	framework			
413	4	Policy maker	find information on the	I can justify national level	evidence that	Legal and	Tools for	Data		
			contribution of DiSSCo to	investments in its operation	DiSSCo's activities	policy	reporting &	integration		
			the international		align with (e.g.)	framework	statistics			
			environmental policy		Sustainable					
			agenda		Development Goals					
414	4	Policy maker	know how well sampled	I can fund future	an extractable list of	Metadata on	Tools for			
			my country is	biodiversity exploration	specimens to	collection	reporting &			
				and research	understand which	level	statistics			
					parts of my country					
					are poorly known on					
					an easy to see map					
415	4	Policy maker	know the use of the	I can distribute resources	information on access	Tools for	Legal and			
			collections by other	and allocate them in	to the collections,	reporting &	policy			
			domains as a key indicator	•	virtually and	statistics	framework			
			of its impact	priorities of the	physically, from					
				government that I	different types of					
				represent	users					
416	4	Policy maker	understand the value of	I can justify the national	access to impact	Tools for	Metadata on			
			DiSSCo	level investments in its	stories and/or	reporting &	collection			
				operations	assessments	statistics	level			
417	5	Curious	learn about the	I can improve my	scientific names,	Metadata on	Data			
		person	rocks/minerals/fossils that		common names,	record level	integration			
			might be in my	mineralogy / palaeontology						
			environment		coordinates,					
					characteristics,					
					images					

418	5	Exhibitions	be able to find the location	I can design and realise	information about the	Metadata on	Metadata on			
		maker	of specimens and	interesting and accurate	location and status of	collection	record level			
			information about species	exhibitions and if required,	specimens in museum	level				
				loan specimens from	collections					
				otgher institutions						
419	5	Science	know about the research	l can organize a	information on	Data				
		communicatio	being carried out in	dissemination event	research topics and	integration				
		n officer	natural history collections		the people behind					
					them					
420	5	Student	be able to identify the	I save time and money, by	to have access to the	Tools for	Advanced	2D images	Morphologica	Distribution
			species in scientific field	avoiding the physical	NHMs' digitalised	identification	search		l data	data
			trips, without visiting the	travelling to those NHMs	species' identities		functionality			
			relative collections of		(morphometric					
			NHMs		characters, names,					
					distributions, etc.)					
421	5	Student	check my identification of	I can test my knowledge	image/characteristics,	Tools for	Images	Metadata on	Data	
			а	about	links to papers,	identification		collection	integration	
			geological/palaeontoogical	rocks/minerals/fossils and	collection metadata			level		
			specimen	and learn more about a						
				group I am studying						
422	5	Student	find a high resolution	I can perform	a reference to the	Tools for	2D image	3D image	Tools for	
			image	morphological analysis as	higher resolution	identification			downloading	
				part of my coursework	image and the clear				data/metadat	
					procedure to retrieve				а	
					it					
423	5	Student	find the referencing	I can cite the source in a	a reference to the	Metadata on	Data			
			information for an image	written report which	citation information	record level	integration			
				includes the image	for the image					
424	5		be able to provide	I can educate students/the	,	Metadata on	Advanced			
			accurate scientific	public about the natural	up-to-date	record level	search			
				world	information about the		functionality			
			rocks/minerals and		specimens in museum					
			specimens		collections					

425	5	Teacher	find a high resolution 3D	I can use a hologram	a reference to the	Advanced	3D images	Data	
			model	projector for inspection of	available 3D models	search		integration	
				the specimen in class		funcionality			
426	5	Teacher	find out if there is a	I can create a 3D physical	a reference to the	Advanced	3D images	Data	
			printable version of a 3D	model for study in class	available 3D models	search		integration	
			model			funcionality			
427	5	Teacher	find a high resolution 3D	I can develop a folding	a reference to the	Advanced	3D images	Data	
			model	forms for students (the	available 3D models	search		integration	
				broader public)		funcionality			
428	5	Teacher	get microfossil microscope	I can use them for teaching	(sets of) microfossil	Metadata on	Physical		
			slides	at highschools or	microscope slides	record level	access		
				universities	(physical objects) plus				
					metadata				
429	6	Developer	find a 360 degree view or a	I can use it in the creation	a reference to the	3D images	Advanced		
			3D model of a specimen	of interactive content for	available 3D models		search		
				use with augmented reality			functionality		
				educational software					
430	6	Digitisation	produce digital specimens	I can upload the images to	an automated	Tools for	Data		
	-	officer	from a digitisation line	a customer's CMS	workflow minting	uploading	integration		
					PIDs	-p.c			
431	6	Publisher	include a digital image	I can illustrate the	access to the digital	Legal and	2D images	Data	
			from a collection in a	publication	images and copy	policy		integration	
			scientific paper		rights to use the	framework			
					image				

432	6	Software	develop new usages of the	I can make the data easier	detailed collection	Metadata on	Data		
		developer		accessible to the general	level information	collection	integration		
				public and facilitate that		level			
			through apps or web	different collections can be,					
			interactions	for instance, cross-					
				referenced. At the same					
				time the additional data					
				can updated in the core					
				databases. This includes					
				addition of geographic					
				locality data as most users					
				hold an handheld GPS					
				device. The vantage point					
				to access these 'big data'					
				sources could be					
				educational, entertaining,					
				medical, historical and					
				natural sciences.					
40.0									
433	6	Solution	•	the curators and scientists	information on	Tools for		Tools for data	
		provider			volumes, locations	reporting &		discovery	
				with their collections at less		statistics	level		
				financial costs	an insight on what is				
					digitally represented				
					and what not. Even				
					better would be if				
					there is an institutions				
					priority as to what				
					needs to be digital				
					first.				

434	6	Solution provider	tap into the vast market of digital storage solutions for digital natural collections	I can sell my services and consultancies	on collection type,	Metadata on collection level	Tools for reporting & statistics	Tools for data discovery	
435	6	Artist	, , , , ,	I can use it during the creation of an historical art installation	2D or 3D scans of fossils	3D images	2D images	Data integration	
436	6	Film maker or artist	film the (micro)fossil collections and interview scientists/curators	I can get footage for movies or art projects	"stories" related to the collections (e.g. historically important collections or somewhat fascinating material/species)	Metadata on collection level	Metadata on record level	Data integration	
437	6	-		I can work as a consultant for companies (e.g. in the oil industry)	certain fossil groups	Metadata on collection level	Metadata on record level		
438	6	Curator or researcher	sediments, soil types, and/or organisms	I can work as an expert or consultant in forensics and support police or law enforcement agencies (e.g. to identify the locality of soil traces or determine fresh vs. salt water, etc.; forensic geology/limnology)	reference set of materials, to search for relevant collection objects	Metadata on collection level	Metadata on record level		
439	6				infrastructure rather than collection	Physical access			

440	7			my readers can learn more about the topic of an article			Data integration		
441	7		film the (micro)fossil collections and interview scientists/curators	I can get footage for documentaries		Data integration	Metadata on collection level		
442	7	relations officer / Press officer		I can use it for self- marketing or for public information		Tools for reporting & statistics	Tools for downloading data/metadat a		
443	7	officer	and data on the collection	I can offer these infographics to newspapers or use them for self-marketing	to be able to sum up certain data	Tools for reporting & statistics	Tools for downloading data/metadat a		

CAT (Category based on ICEDIG T6.2)

1. Research (academic & non-academic, including citizen science)

2. Collection management

3. Technical support (IT & IM)

4. Policy (institutional, national & international)

5. Education (academic & non-academic)

6. Industry

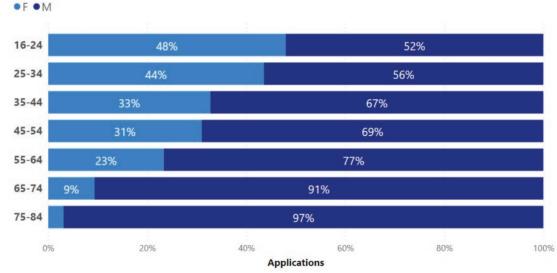
7. External (media & empowerment initiatives)

Appendix 3. SYNTHESYS Transnational Access Analysis

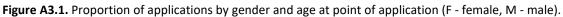
In addition to surveys and approaching (potential) new users of the DiSSCo research infrastructure, NHMUK analysed the SYNTHESYS Transnational Access (TA) programme. As of September 2020, the TA dataset covers over 4,450 funded visits totalling over 54,000 researcher days to 26 collection-holding institutions in 14 countries with c. 12,300 self-reported research outputs. The full report includes background information and context, methodology (database review, standardisation, schema analysis and modelling, analysis database construction, data cleaning and enhancement), analysis (preparation of a publishable analysis database with removal of personally identified information (PII), DOI matching). The report will be submitted as a formal publication before June 2021. A summary of the results for demographics, functional demands on collections and facilities, and socio-economic impact is given below.

The SYNTHESYS Transnational Access data was harder to analyse than we had anticipated. When the access database was originally created it was not designed to analyse outputs. There was no verification of outputs by an administrator so the data quality is variable and contains user errors. Manual verification of the entire output dataset is time consuming – designing future systems that track the research outputs associated with collections or specific facilities should utilise automated validation or using controlled vocabularies. This would make subsequent analysis easier.

Future analysis could study the authors and their collaborators to understand their research fields and backgrounds. Data mining acknowledgements to study co-funding sources would potentially give an insight into cross-disciplinary work. Studying publications with the highest downstream citations would give an alternative metric for understanding impact of research but comes with its own limitations.


In terms of functional requirements for facility and collection access, further work could be usefully carried out on the relationships between collection access requirements and facility access requirements. One promising area of investigation would be to analyse any trends between collection type and analysis facility usage: does more than one installation per project reflect a dependency between collection access and availability of analysis facilities, or is the cause of this overlap driven by more pragmatic factors around availability of access to collections/facilities during a SYNTHESYS-funded visit? These kinds of questions may be useful for DiSSCo when trying to anticipate the needs of its future users.

The absence of a controlled vocabulary around the types of collection users wish to access makes it difficult to get more granular data around demand for, and usage of, these collections. Time permitting, more detail could potentially be extracted by running a Named Entity Recognition algorithm over unstructured data fields that are likely to contain useful information, e.g., project title and anticipated research benefits.

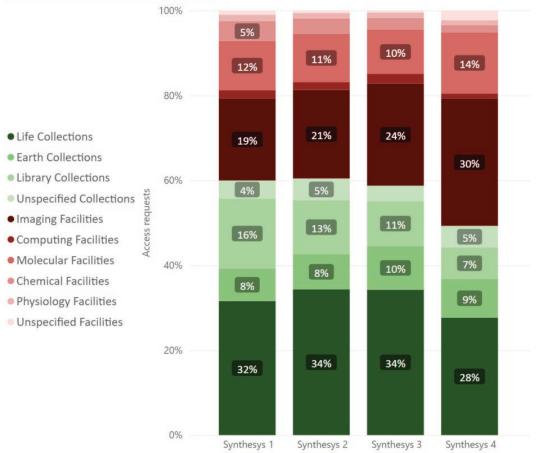

For future tracking of outputs across DiSSCo partners and in SYNTHESYS successors we recommend using a more sophisticated system that would support text mining and automated analysis. Tracking outputs from facility and collection usage is an important metric but poorly supported by the systems and data we currently have to hand.

Demographics

As of late 2019, 64% of applications submitted to the SYNTHESYS TA programme were made by men, 36% by women.

Proportion of applications by gender and age at point of application

Women were most likely to apply during the postgraduate stage of their career (44% of all applications by women), whereas the dominant career stage recorded by male applicants was 'experienced' at 37% of the total (see Figure A3.1). Overall, 34.5% of applications were made by postgraduates, 31% by postdocs, and 31% by 'experienced' career-stage researchers. Technical applicants comprised 1.5% of overall applicants and undergraduates 2.5%. The most common age bracket for applicants at the point of application is 25-34 years of age (43.6% of all applications submitted), followed by 35-44 years (27.4%). The prevalence of younger, earlier-career applicants in the TA scheme is not surprising: established researchers are more likely to have additional avenues of funding available for a research trip. The drop-off in numbers of female applicants after their early 30s seems likely to reflect a paucity of time, rather than funding (Cech & Blair-Loy 2019).


Functional demands

The functional requirements for all applications were investigated in order to derive a more accurate overview of functional demands for institutional collections and services independent of TA Programme's administrative practices, which exist in part to ensure that demand for a particular category of service or collection does not overwhelm available host capacity.

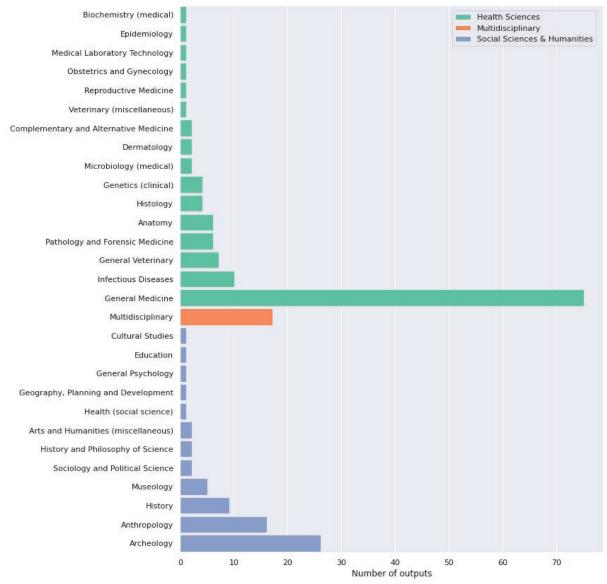
At the national level, institutions in the UK received the most access requests through the SYNTHESYS TA scheme (30% of total), followed by France (11%) and the Netherlands (10%). Approximately 60% of all access requests are made to collections and the remaining 40% are targeted towards analytical facilities.

The majority (58%) of applicants requested access to more than one collection and/or analysis facilities within a single project application. Request distribution over the different access categories has stayed consistent over time (see chart below, Figure A3.2). SYNTHESYS Round 4 data is incomplete because it is still ongoing, so the increase in imaging requests visible in this round may not be sustained throughout.

Collection/facility access requests over time

Figure A3.2. Chart showing distribution of request count by category of host facility or collection. Round 1 (n = 8.5k), Round 2 (n = 5k), Round 3 (n = 6.2k), Round 4 (Incomplete: n = 2.8k).

User discipline diversity and socio-economic importance


CrossRef records were found for 2,780 articles (22.6%) of the 12,280 self-reported research outputs provided by users after removing duplicates. Of these, 2,431 were identified by searching for the title and authors using the CrossRef API's search functionality, 672 (20.7%) had a user-provided DOI, and the remainder were identified from DOIs extracted from other user-provided data.

These CrossRef article records were then checked for potential discipline diversity and socio-economic impact using two approaches:

- 1. Automated journal subject tagging looking for atypical subject tags that were neither life sciences or earth sciences
- 2. Manual title checks looking for papers of more immediate societal relevance

From the automated journal subject tags we counted the number of non-Life/Earth Sciences research outputs in each subject tag category (see Figure A3.3). The majority fell into general medicine with a fairly broad distribution across 28 other categories. While this was a useful summary it did not provide enough information to make any judgements on socioeconomic importance.

Subject tags of non-Life/Earth Science research outputs

Manual title checks were the most reliable way of checking whether a research output mapped to one of the seven <u>H2020 Societal Challenges</u> which we were using as a proxy for socioeconomic importance. We manually checked each of the 2,780 publication titles and verified if the paper cited SYNTHESYS in either the acknowledgements or funding metadata. This resulted in 199 outputs that mapped to a societal challenge of which 49 acknowledged SYNTHESYS.

The majority (37) mapped to the "Climate action, environment, resource efficiency and raw materials" and depending on how strictly you consider the "environment" component of the challenge then many more of the 2,780 could be assigned here. Six outputs were assigned to the "Food security, sustainable agriculture and forestry, marine and maritime and inland water research, and the Bioeconomy" with the final six evenly distributed into "Health, demographic change and wellbeing", "Europe in a changing world – inclusive, innovative and reflective societies" and "Secure societies – protecting freedom and security of Europe and its citizens."

Appendix 4. Target Groups for additional surveys and interviews. Given is the target group or contact point and a use case category where surveys contributed to or might contribute in future.

Target Group / Contact Point	Use Case Category
Geo- and Paleo colleagues from DPP Partner Institutions	1. Research
<u>Geo.X</u>	6. Industry
(Research Network for Geosciences)	
TDWG Palaeo & Earth Science Interest Group	several
PR team from DPP Partner Institutions	7. External
Mediasphere for Nature Network with a focus on particular partners	6. Industry
Educational sector from DPP Partner Institutions	5. Education
Partners from Synthesys+ NA5 Survey (Engaging with the private sector: Experience of institutes)	6. Industry
Geological Service / geological state agency	4. Policy
'Umbrella Organization for Geosciences' (<i>Dachverband der Geowissenschaften</i> , https://www.dvgeo.org/	several
Federal Institute for Geosciences and Natural Resources	4. Policy
(via personal contact)	
The German Mineralogical Society (via personal contact)	1. Research
	5. Education
The German Paleontological Society (via personal contact)	1. Research
	5. Education
Different Industries / Companies	6. Industry
(via personal contact)	
Film Academy	5. Education
(e.g. Konrad Wolf University Babelsberg)	7. External
Broadcasting Company	5. Education
	7. External
Lyme Regis Fossil Festival	5. Education
CETAF Earth Sciences group experts	1. Research