
ENVRI-FAIR DELIVERABLE

ENVRI-FAIR (www.envri-fair.eu) has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 824068

D7.3:
ENVRI-FAIR Knowledge Base
for RI Service Interoperation

and Competence

Work Package WP7

Lead partner UvA

Status Final

Deliverable type Report

Dissemination level Public

Due date 31-08-2020

Submission date 07-12-2020

Deliverable abstract

The overarching goal of ENVRI-FAIR is for all participating RIs to improve their FAIRness and prepare the

connection of their data repositories and services to the European Open Science Cloud (EOSC). With the

development of FAIR implementations from the participating RIs and integrated services among the

environmental subdomains, these data and services will be brought together at a higher level (for the entire

cluster), providing more efficient services for researchers and policy makers.

This deliverable introduces the building of the Knowledge Base in the ENVRI-FAIR context, describes the

approach chosen for the knowledge construction, its support for sharing technical practices, identifying

common problems and solutions, searching existing solutions for interoperability challenges among

environmental RIs, and knowledge-based decisions.

The objective of this task is to build a cluster-level Knowledge Base in order to share technical practices,

identify common data and service requirements and design patterns, and facilitate search and analysis of

existing RI solutions for interoperability challenges that are shared among environmental RIs.

http://www.envri-fair.eu/

ENVRI-FAIR DELIVERABLE D7.3 2 / 39

DELIVERY SLIP

DELIVERY LOG

Issue Date Comment Author

V 1.0 13-07-2020 First Draft Xiaofeng Liao

V 2.0 09-11-2020 Second Draft Zhiming Zhao

 13-11-2020 Comments from Reviewer 1 Keith Jeffery

 23-11-2020 Comments from Reviewer 2 Peter Thijsse

 26-11-2020 Comments from Reviewer 3 Christian Pichot

V 3.0 26-11-2020 Final version Zhiming Zhao

DOCUMENT AMENDMENT PROCEDURE
Amendments, comments and suggestions should be sent to the Project Manager at

manager@envri-fair.eu.

GLOSSARY
A relevant project glossary is included in Appendix A. The latest version of the master list of the glossary

is available at http://doi.org/10.5281/zenodo.3465753.

PROJECT SUMMARY
ENVRI-FAIR is the connection of the ESFRI Cluster of Environmental Research Infrastructures

(ENVRI) to the European Open Science Cloud (EOSC). Participating research infrastructures (RI) of the

environmental domain cover the subdomains Atmosphere, Marine, Solid Earth and Biodiversity /

Ecosystems and thus the Earth system in its full complexity.

The overarching goal is that at the end of the proposed project, all participating RIs have built a set of

FAIR data services which enhances the efficiency and productivity of researchers, supports innovation,

enables data- and knowledge-based decisions and connects the ENVRI Cluster to the EOSC.

This goal is reached by: (1) well defined community policies and standards on all steps of the data life

cycle, aligned with the wider European policies, as well as with international developments; (2) each

participating RI will have sustainable, transparent and auditable data services, for each step of data life

cycle, compliant to the FAIR principles. (3) the focus of the proposed work is put on the implementation

of prototypes for testing pre-production services at each RI; the catalogue of prepared services is defined

for each RI independently, depending on the maturity of the involved RIs; (4) the complete set of

thematic data services and tools provided by the ENVRI cluster is exposed under the EOSC catalogue of

services.

 Name Partner Organization Date

Main Author Zhiming Zhao UvA 08-11-2020

Contributing Authors Xiaofeng Liao,

Doron Goldfarb

Markus Stocker

Siamak Farshidi

Barbara Magagna

UvA

EAA

TIB

UvA

EAA

Reviewer(s) Keith Jeffery

Peter Thijsse

Christian Pichot

NERC/EPOS

MARIS/SeaDataNet

INRA/ANAEE

Approver Andreas Petzold FZJ 30-11-2020

mailto:manager@envri-fair.eu
http://doi.org/10.5281/zenodo.3465753

ENVRI-FAIR DELIVERABLE D7.3 3 / 39

TABLE OF CONTENTS

D7.3 - ENVRI-FAIR Knowledge Base for RI Service Interoperation and Competence 5

1 Introduction ... 5

2 Requirements .. 5

3 The state-of-art .. 6

3.1 Knowledge Base overview ... 6

3.2 Technologies involved in knowledge development ... 8

3.2.1 Knowledge storage ... 9
3.2.2 Knowledge management .. 9
3.2.3 Search Interface .. 11
3.2.4 Knowledge Graph Visualisation ... 13

3.3 Gap Analysis .. 14

4 System Design .. 15

4.1 Architecture of KB ... 15

4.2 How does it work ... 18

5 Implementation ... 20

5.1 Current prototype ... 20

5.2 Knowledge storage ... 20

5.3 Tools for ingesting knowledge ... 21

5.3.1 Data acquisition for service portfolio based on Web-input-forms 21
5.3.2 From Questionnaire to FAIRness ... 22
5.3.3 Online content ingestion pipeline ... 23

6 Demonstration ... 24

6.1 FAIRness status sharing and gap analysis .. 24

6.2 Ontowiki as Knowledge Management Platform .. 25

6.3 Describing new tools in Knowledge Base .. 26

6.4 Knowledge Base Search Engine... 30

6.4.1 Search Results ... 31
6.4.2 Search Categories ... 32
6.4.3 Visualisation ... 33
6.4.4 Thesaurus editor for editing, structuring & linking vocabulary or dictionary of topics,

concepts & names ... 34
6.4.5 Optical Character Recognition results .. 34
6.4.6 Index Datasources ... 35

7 Summary ... 36

7.1 Embedded in community effort .. 36

7.2 Future development .. 36

8 References ... 37

9 Appendix 1: Glossary.. 38

ENVRI-FAIR DELIVERABLE D7.3 4 / 39

List Of Images

■ Figure 1. Online wiki of the ENVRI community.

■ Figure 2. Esonet Yellow pages.

■ Figure 3. An open Knowledge Base example.

■ Figure 4. An enterprise view of the envri Knowledge Base. The enterprise view highlights the key

stakeholders (namely communities in the ODP term) and their interaction scenarios with the Knowledge

Base. The numbered circles indicate the possible orders of the interactions.

■ Figure 5. Architecture layers.

■ Figure 6. Knowledge Base content components.A Knowledge Base search engine is provided for

different end users to search different contents.

■ Figure 7. Basic information flow of the knowledge ingestion.

■ Figure 8. Search the Knowledge Base.

■ Figure 9. Describing a technology using the portfolio input tool provided by KB.

■ Figure 10. Knowledge ingestion from different information sources.

■ Figure 11. Data model for describing services, software, related use-cases and documents.

■ Figure 12. From rdforms specifications to triples.

■ Figure 13. Ingestion of pre-existing datasets and Knowledge Bases.

■ Figure 14. Screenshot of the running the prototype for discovery of FAIR-ness gaps at the granularity of

RI repositories and corresponding Technology Demonstrators.

■ Figure 15. Summary of related repositories of Aerosols, Clouds and Trace gases Research Infrastructure.

■ Figure 16. Ontowiki User Interface.

■ Figure 17. Describing software components.

■ Figure 18. Describing documents.

■ Figure 19. Describing services.

■ Figure 20. Describing use_cases.

■ Figure 21. Eight services described using rdforms shown in Ontowiki.

■ Figure 22. The starting page of the Knowledge Base Search interface.

■ Figure 23. An example of search results.

■ Figure 24. Ranking criteria enabled.

■ Figure 25. Advanced Search options

■ Figure 26. An example of search categories enabled on the Knowledge Base search engine.

■ Figure 27. A graph representation of the search output.

■ Figure 28. Open Semantic Thesaurus Editor and Thesaurus Manager configured in KBSE.

■ Figure 29. Settings for OCR in KBSE.

■ Figure 30. Index settings on KBSE.

List Of Tables

■ Table 1. Comparison of existing platforms/products.

■ Table 2. Comparison between Open Semantic Search and ElasticSearch.

■ Table 3. Comparison between Knowledge Graph Visualisation Options.

■ Table 4. Example for rdforms template for dynamic option menu.

■ Table 5. Glossary.

ENVRI-FAIR DELIVERABLE D7.3 5 / 39

D7.3 - ENVRI-FAIR Knowledge Base for RI Service

Interoperation and Competence

1 Introduction

This document describes the results and the progress made by WP7 regarding the Knowledge Base (KB)

construction and introduces the main components of the Knowledge Base for RI Service Interoperation

and Competence.

A cluster-level Knowledge Base, which is obviously not a new idea and had been discussed since at least

the prior project ENVRIplus, is now being implemented to enable different users in ENVRI (e.g. RI

developers, data managers and users) to effectively share their technical practices, identify common data

and service requirements and design patterns, and facilitate search and analysis of existing RI solutions

for interoperability challenges that are shared among environmental RIs. The Knowledge Base provides

Knowledge-as-a-Service for the RI development communities to document the development and

operation of RI services and to address engineering problems.

More specifically, the Knowledge Base will

1. Ingest technical results from ENVRIplus, FAIR assessment (reported in T5.1), key output from

task forces (organised by WP5), sub domains and other tasks using a formal language for

knowledge representation and proven semantic technologies;

2. Provide services and tools to enable RI developers and data managers to browse, search, retrieve

and compare RI technical statuses and technical solutions to development problems via

available content;

3. Provide content management tools for specialists in the ENVRI community to ingest new

knowledge and control the quality of content;

4. Also provide interfaces to other existing semantic resources, e.g. the service catalogue of a

future ENVRI-HUB, to enhance knowledge discovery and cross-RI search, between knowledge

services and the online presence of ENVRI resources.

The process started with utilising resources from previous projects, discussing with the community,

agreeing on objectives, defining user stories, and implementing prototypes to demonstrate selected

functionality.

The deliverable summarises the requirements for the Knowledge Base (section 2), the review of the state

of the art (section 3), the architecture design (section 4) and the current implementation (section 5). The

deliverable also demonstrates the current system in different scenarios (section 6) and discusses the

development agenda for the next phase and the sustainability plan.

2 Requirements

The idea of an ENVRI community Knowledge Base was initially proposed in the ENVRIplus project for

documenting the engineering status of each research infrastructures. The initial user stories for the

ENVRI knowledge mainly focus on the data manager, RI service or Virtual Research Environment

(VRE) developers, e.g., for enabling a developer to check the existence or details of data management

solutions from different RIs. A detailed requirement analysis has been made at that time, the output has

been summarised in the recent ENVRI book [1] and presented in a conference [2].

After the ENVRI-FAIR project started, we extended the scope of the initial requirements, for supporting

the sharing of FAIRness assessment, for identifying the gaps of current FAIRness, for searching

knowledge from the broader potential data sources (e.g., metadata catalogue of emerging ENVRI-HUB),

and for enabling future integration with Virtual research environments (e.g., from EOSC or other

communities).

We derived the following prioritised technical requirements from the early phase:

1. Compatible with Semantic Web technologies. As the most common type for knowledge storage,

representation, reasoning, the support of RDF is the core requirement in design and developing

of our Knowledge Base. This requirement can include the following specific options, like: RDF

import/export, RDF storage, owl import, SPARQL and GeoSPARQL support.

It is acknowledged that while providing many advantages especially in the context of integrating

and operating on heterogeneous knowledge sources and of linking to existing external

resources, RDF, but also the overall concept of operating on a non-monolithic set of data

ENVRI-FAIR DELIVERABLE D7.3 6 / 39

collections, comes with specific limitations as well, such as lack of support for referential

integrity. It is nevertheless assumed that the nature of the KB content is of rather non-volatile

nature, shifting this aspect more into the background.

2. Semantic search & Query functionality. An interface for search and discovery of Knowledge

Base content should be provided, this could be the conventional keyword-based search or a

faceted search. Rather than strict adherence to a single controlled vocabulary or keyword set, a

semantic search function is further expected to permit search based on ‘similar’ or ‘related’

terms, across multiple ontologies/controlled vocabularies.

3. Open and flexible knowledge ingestion. Due to the variance of source types in the ENVRI

community, various methods should be supported for knowledge acquisition, like form-based

manual RDF ingestion, Questionnaire-based RDF triple generation, existing RDF integration,

structured and unstructured information transformation, etc. Certain measures should be

considered to facilitate non-technical users adding knowledge in a straight-forward way.

4. Provenance and version control of the knowledge. Considering the typical case where multiple

users contribute to the Knowledge Base, provenance is of fundamental importance for

monitoring and tracking issues, for example enabling a third party to reproduce the scientific

workflow, for an authority to audit the whole process. This especially refers to the tracking of

individual additions, deletions, and updates and their administration, i.e. approval, rejection,

reversion.

5. User friendly and customisable user interface. A clear and straight-forward user interface is

needed for users to fulfil their objectives, like query, (semantic) search. Advanced services like

comparison, recommendation are also needed for interested users. Considering the difference

between general public users and professional users, two different user interfaces should be

provided for them respectively.

6. Scaling and increasing performance. To tackle the growing size of the Knowledge Base, a

choice between centralised or distributed storage should be considered. Also should be

considered includes the dynamic resource scheduling facing concurrent search/query requests.

Other features like collaborative editing are required to enable comment on contributions by

other users.

7. API interface. An application programming interface (API) abstraction layer can help make

knowledge accessible through applications to facilitate the transaction of knowledge via APIs.

Among those technical requirements, the ENVRI Knowledge Base should play a key role in the ENVRI

communities for helping the development of the FAIR data services, and for sharing their best practices.

3 The state-of-art

As there exist off-shelf systems/tools and technologies for each aspect, in this section, we briefly review

existing technologies and discuss the selection of the technical choices for our development.

3.1 Knowledge Base overview

In its most simple form, a Knowledge Base can represent a collection of documents dedicated to a

specific topic, which can be common solutions to frequently arising problems, such as usually provided

in dedicated “Questions and Answers” sections, or a collection of information and advice about a specific

topic, such as provided for different research methods in the “Research Methods Knowledge Base“ [3].

In the context of environmental research infrastructures, the ENVRI Wiki1 (see Figure 1) can similarly

be considered to be a Knowledge Base, providing information about project context and outputs.

1 http://mediawiki.envri.eu/index.php?title=Category:Data_for_Science

http://mediawiki.envri.eu/index.php?title=Category:Data_for_Science

ENVRI-FAIR DELIVERABLE D7.3 7 / 39

Figure 1. Online wiki of the ENVRI community.

While such approaches are targeted at a human audience and commonly do not even provide any search

functionality beyond free text search, other applications seek to provide descriptions of entities relevant

for the research infrastructure and processes in a machine- readable/understandable, structured form and

to make them available following established representation standards such as RDF and standardised

interfaces for querying, such as SPARQL. This allows the creation of sophisticated search and

recommendation functionality and especially in the case of Linked Data (RDF) representations, the

extensive interlinking of the descriptions with related context information from different sources. Using

contextual information which is structured in the form of taxonomies or ontologies lays the foundation

to move from mere machine-readability towards machine understanding.

Esonet Yellow Page is another example developed throughout the EU FP6 ESONET Network of

Excellence project, the ambition was to collect information about available products for Deep-Sea

Observatories and to provide a platform for searching and exploring them. Collected entities included

“sensors”, “hardware components”, “deep sea services” and “manufacturers”, especially the former two

including not only technical specifications but also information about compatibility and standardisation

procedures.

Figure 2. Esonet Yellow pages.

ESONET has a dedicated component called Knowledge Base described in [4]. This approach was based

on the concept of a Web platform to aggregate and visualise existing structured information about sensors

and observatories obtained from a sensor registry, which allowed the registration of individual sensor

installations using sensor metadata derived from ESONET Yellow Pages described above, combined

ENVRI-FAIR DELIVERABLE D7.3 8 / 39

with related measurement data derived from an archive, the ESONET data catalogue, and from real-time

measurements provided via OGC SOS2 . This concept of the Knowledge Base thus rather followed the

vision of a data portal, which was also reflected in its public name3.

Structured knowledge can be combined with inference mechanisms that can derive explicit facts from

implicitly hidden relations found in the available information. Such approaches have in common that the

Knowledge Base usually represents an extensive collection of very basic, “low-level” facts which are

interrelated via rules of varying complexity and described using dedicated domain ontologies relating

the classes of the involved entities on a conceptual level.

While the Knowledge Bases serving the facts for such dedicated knowledge-based systems have

traditionally been built and maintained by experts within clearly confined, domain-specific boundaries

of knowledge, developments such as the establishment of OBO4 foundry ontologies, described in [5],

have led to a more open approach to collect related facts. A very recent approach, described in [6], goes

one step further and proposes Wikidata (as shown in Figure 3), the open Knowledge Base, as a source

for life sciences related tasks, including integrative queries, crowdsourced curation, phenotype-based

disease diagnosis, and drug repurposing, the latter two based on data-mining approaches. Wikidata,

described in [7] was initially conceived as a common fact base for multilingual Wikipedia pages to serve

language-agnostic information across multiple language versions of articles about the same thing. In the

meantime, it has evolved into an extensive repository of cross-domain knowledge, fed by initiatives from

very different domains such as Cultural Heritage5 or Molecular Biology6.

Figure 3. An open Knowledge Base example.

3.2 Technologies involved in knowledge development

We will review the relevant technologies involved in the development of the Knowledge Base according

to the key aspects identified by the requirements in the previous section.

2 The Open Geospatial Consortium (OGC) Sensor Observation Service (SOS) is a specification for Web

services allowing to query sensor data in real-time and as time series.
3 https://dataportals.pangaea.de/esonet/
4 The Open Biological and Biomedical Ontologies (OBO) Foundry is a group of researchers dedicated

to building and maintaining ontologies for the life sciences
5 https://www.wikidata.org/wiki/Wikidata:WikiProject_Cultural_heritage
6 https://www.wikidata.org/wiki/Wikidata:WikiProject_Molecular_biology

https://dataportals.pangaea.de/esonet/
https://www.wikidata.org/wiki/Wikidata:WikiProject_Cultural_heritage
https://www.wikidata.org/wiki/Wikidata:WikiProject_Molecular_biology

ENVRI-FAIR DELIVERABLE D7.3 9 / 39

3.2.1 Knowledge storage

RDF or similar triple-graph-like data structures are widely used in knowledge representation; A range of

existing approaches can be used for knowledge storage, from traditional RDBMS to dedicated Graph

databases.

Relational database management systems (RDBMS), such as MYSQL7, are for example used by the

popular Mediawiki software to drive the Wikipedia ecosystem. Wikibase, the engine behind Wikidata,

introduced in the previous section, is another example in this regard. Additional services such as the

SPARQL-based Wikidata query service operate on RDF data which is created via MYSQL-RDF exports

taking place in regular intervals.

Triplestores are specialised graph databases dedicated to storing RDF data. Apache Jena8 is a Java-based

framework for handling RDF data. Jena can be used as a hybrid store operating on top of MYSQL (Jena

SDB) or as a native Triplestore using its own infrastructure (Jena TDB). TDB can be operated in-memory

or using a disk index. Jena Fuseki is a SPARQL server, which can run as an operating system service, as

a Java web application (WAR file), and as a standalone server, using TDB to as a robust, transactional

persistent storage layer.

Virtuoso9 is a high-performance and scalable Multi-Model RDBMS, Data Integration Middleware,

Linked Data Deployment, and HTTP Application Server Platform. It combines the functionality of a

traditional Relational database management system (RDBMS), Object-relational database (ORDBMS),

virtual database, RDF, XML, free-text, web application server, and file server functionality in a single

system. Virtuoso’s RDF engine is a hybrid design operating on top of Virtuoso’s RDBMS.

General purpose graph databases can handle any type of node-link based information, while

Triplestores are designed to operate solely on RDF-based data. One fundamental distinction between

RDF graphs and general-purpose graphs is that RDF does not allow for the annotation of individual

triples (i.e. adding attributes to individual links between two instances) without relatively complicated

mechanisms such as reification. So-called labelled property graphs in turn assign individual IDs for each

link, allowing to attach attributes such as values, categories, etc. Neo4J10 is an example for such a labelled

property graph DB, offering a dedicated query language (Cypher) to access the stored information. In

contrast to Triplestores with their standard SPARQL query engines, however, there is currently no

comparable general standard available, limiting the usability of individual solutions to the respective

platforms.

3.2.2 Knowledge management

Assuming RDF as target data format for the ENVRI-FAIR KB, this section therefore explores solutions

to allow data managers to access the content of the Knowledge Base using GUI tools with the aim to

explore, search and edit the KBs content in a user friendly manner. In contrast to end user interfaces,

however, the considered approaches are rather targeted at administrative tasks.

Five existing solutions to presenting/managing RDF-based content were compared for basic features

such as the support for exploring and/or visualising triples, but also for technology related issues such as

native RDF/SPARQL support or open-source related aspects such as availability via Github and the time

of the last edits performed there. Besides supporting content exploration on triple level, three of the five

compared solutions also allowed for content management (Upload, individual editing) and are presented

in more detail below, followed by the overall results of the comparison summarised in Table 1.

Ontowiki, first described in [8], is a collaborative knowledge engineering platform for RDF based data.

With its latest version introduced in [9], it provides a browser-based interface for editing and browsing

collections (“Knowledge Bases”) of RDF statements and puts heavy emphasis on collaborative editing

features such as social comment features and statement-level provenance with history. Implemented in

PHP, it can use different data backends, including relational DBMS such as MySQL or Triplestores such

as Openlink Virtuoso. Another flexible feature is its plugin-based architecture, enabling the addition of

different features such as data visualisation.

Semantic Mediawiki (SMW) is an extension to the popular Mediawiki software driving the well-known

Wikipedia universe. It is mainly intended to augment classical Mediawiki markup pages with semantic

annotation, serving e.g. to dynamically update certain facts such as dates or quantities. Using Mediawiki

as a foundation, it offers all the collaboration features of the software, i.e. discussion and version history.

7 https://www.mysql.com
8 https://jena.apache.org
9 https://virtuoso.openlinksw.com
10 https://neo4j.com

https://www.mysql.com/
https://jena.apache.org/
https://virtuoso.openlinksw.com/
https://neo4j.com/

ENVRI-FAIR DELIVERABLE D7.3 10 / 39

By default, SMW uses the standard Mediawiki data infrastructure for storage but can be extended to use

a Triplestore in parallel. A significant difference to OntoWiki is that in SMW, structured information is

used only for annotating entities in Wikitext (In an RDFa like fashion) and to display lists, it is not meant

to “drive” the Wiki content itself.

Wikidata uses a proprietary data format that provides a number of features that require workarounds to

be represented as RDF, such as n-ary relations or statement-level provenance. Wikidata uses a set of

Mediawiki extensions called Wikibase11 for its data architecture, which therefore includes similar

collaboration features as SMW. As described in [10] the data can be converted into an RDF

representation for export and a parallel triplestore representation of Wikidata content offers SPARQL-

based querying. As of today, however, there is no means to directly import RDF into Wikidata.

Table 1. Comparison of existing platforms/products.

 Semantic Mediawiki Wikibase (Wikidata) OntoWiki

Editor

X (In fulltext or via

Page Forms12 X X

Triple Viewer X X X

Visualisation

Optional (e.g.

graphextension)13 Several built-in features14 Optional (Cubeviz)15

Built-in

UI Features

https://www.semantic-

mediawiki.org/wiki/Help:Br

owsing_interfaces

Example raw

page

https://sandbox.semantic-

mediawiki.org/wiki/Main_P

age

https://www.wikidata.org/wi

ki/Q5593

http://aksw.org/model/inf

o/?m=http%3A%2F%2F

aksw.org%2F

Example

application

site

https://practicalplants.org/wi

ki/Practical_Plants https://wikidp.org/

https://demo.amsl.techno

logy/OntoWiki/list

Original

Purpose

Semantic Annotation of

Wiki pages

Knowledge Base + Fact

Editor for populating

Wikipedia Info boxes Knowledge Base Editor

Full source on

Github Yes Yes Yes

Github URL

https://github.com/Semantic

MediaWiki/SemanticMedia

Wiki

https://github.com/wikimedi

a/mediawiki-extensions-

Wikibase

https://github.com/AKS

W/OntoWiki

Last Edit on

Github 17.06.2019 / Active 14.06.2019 / Active

11.07.2017/Currently no

further dev

https://github.com/AKS

W/OntoWiki/issues/440

Frontend

Technology Browser Browser Browser

Server

Technology PHP PHP PHP

11 https://en.wikipedia.org/wiki/Wikibase
12 http://edutechwiki.unige.ch/en/Page_Forms)
13 https://www.mediawiki.org/wiki/Extension:Semantic_MediaWiki_Graph)
14 https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help/Result_

Views
15 http://aksw.org/Projects/CubeViz.html)

http://edutechwiki.unige.ch/en/Page_Forms
http://edutechwiki.unige.ch/en/Page_Forms
https://www.semantic-mediawiki.org/wiki/Help:Browsing_interfaces
https://www.semantic-mediawiki.org/wiki/Help:Browsing_interfaces
https://www.semantic-mediawiki.org/wiki/Help:Browsing_interfaces
https://sandbox.semantic-mediawiki.org/wiki/Main_Page
https://sandbox.semantic-mediawiki.org/wiki/Main_Page
https://sandbox.semantic-mediawiki.org/wiki/Main_Page
https://www.wikidata.org/wiki/Q5593
https://www.wikidata.org/wiki/Q5593
http://aksw.org/model/info/?m=http%3A%2F%2Faksw.org%2F
http://aksw.org/model/info/?m=http%3A%2F%2Faksw.org%2F
http://aksw.org/model/info/?m=http%3A%2F%2Faksw.org%2F
https://practicalplants.org/wiki/Practical_Plants
https://practicalplants.org/wiki/Practical_Plants
https://wikidp.org/
https://demo.amsl.technology/OntoWiki/list
https://demo.amsl.technology/OntoWiki/list
https://github.com/SemanticMediaWiki/SemanticMediaWiki
https://github.com/SemanticMediaWiki/SemanticMediaWiki
https://github.com/SemanticMediaWiki/SemanticMediaWiki
https://github.com/wikimedia/mediawiki-extensions-Wikibase
https://github.com/wikimedia/mediawiki-extensions-Wikibase
https://github.com/wikimedia/mediawiki-extensions-Wikibase
https://github.com/AKSW/OntoWiki
https://github.com/AKSW/OntoWiki
https://github.com/AKSW/OntoWiki/issues/440
https://github.com/AKSW/OntoWiki/issues/440
https://en.wikipedia.org/wiki/Wikibase
http://edutechwiki.unige.ch/en/Page_Forms
https://www.mediawiki.org/wiki/Extension:Semantic_MediaWiki_Graph)
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help/Result_Views
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/Wikidata_Query_Help/Result_Views
http://aksw.org/Projects/CubeViz.html)

ENVRI-FAIR DELIVERABLE D7.3 11 / 39

Storage

Technology

Relational

(can optionally be

complemented with

TripleStore running in

parallel16

Relational with mirror

Triplestore for Queries Triplestore or Relational

Native RDF

When using complementary

Triplestore No Yes

RDF Export

(Only for

editor) Yes Yes Yes

RDF Import

Via tools, e.g. RDFIO Tool

for RDF import, convertion

to internal format17

Needs longer conversion

workflow,18

would need creation of or

mapping to existing

Wikibase classes/properties Yes

Builtin OWL

import

No

(Could be done via script,

converting owl features

having counterparts in

internal class/property

structure)

No

(Could be done via script,

converting owl features

having counterparts in

internal class/property

structure) Yes (With limitation)

SPARQL

Support

When using complementary

Triplestore

SPARQL queries against

parallel Triplestore Yes

Class/Categor

y System

available for

instantiation

yes; proprietary;

subclass/subproperty

relationships possible

yes; proprietary;

subclass/subproperty

relationships possible Yes; based on OWL

Constraints

(Only for

Editor)

uniqueness (Property can

only be used once per

instance)

Permitted Values

(Controlled list of values to

be entered for property)

datatype check (One of 19) Custom20,21 No

Provenance

Statement Level Provenance

(references)

Statement Level Provenance

(references)

Statement Level

Provenance (references)

Revision

Tracking Yes Yes Yes

3.2.3 Search Interface

Though some of the knowledge management tools investigated in 3.2.2 provide the GUI tools for

querying and searing the Knowledge Bases, their main target users are Knowledge Base administrators

in terms of the expertise required to use these tools. Thus, a more general user interface is still expected

for easy search experience and context-aware exploration of the Knowledge Base.

16 https://www.semantic-mediawiki.org/wiki/Help:Using_SPARQL_and_RDF_stores)
17https://www.semantic-mediawiki.org/wiki/SMWCon_Fall_2016/Batch_import_of_

large_RDF_datasets_using_RDFIO_or_the_new_rdf2smw_tool
18 https://www.wikidata.org/wiki/Wikidata:Data_Import_Guide
19 https://www.semantic-mediawiki.org/wiki/Help:List_of_datatypes
20 https://www.mediawiki.org/wiki/Extension:Wikibase_Quality_Extensions
21 https://www.wikidata.org/wiki/Help:Property_constraints_portal

https://www.semantic-mediawiki.org/wiki/Help:List_of_datatypes)
https://www.semantic-mediawiki.org/wiki/Help:Using_SPARQL_and_RDF_stores)
https://www.semantic-mediawiki.org/wiki/SMWCon_Fall_2016/Batch_import_of_large_RDF_datasets_using_RDFIO_or_the_new_rdf2smw_tool
https://www.semantic-mediawiki.org/wiki/SMWCon_Fall_2016/Batch_import_of_large_RDF_datasets_using_RDFIO_or_the_new_rdf2smw_tool
https://www.wikidata.org/wiki/Wikidata:Data_Import_Guide
https://www.semantic-mediawiki.org/wiki/Help:List_of_datatypes)
https://www.mediawiki.org/wiki/Extension:Wikibase_Quality_Extensions#Special_Page_Constraint_Report
https://www.mediawiki.org/wiki/Extension:Wikibase_Quality_Extensions#Special_Page_Constraint_Report

ENVRI-FAIR DELIVERABLE D7.3 12 / 39

We investigate two systems, open semantic search and Elastic search, which provide comprehensive

search solutions.

Open Semantic Search is an Integrated tool for easier searching, monitoring, analytics, discovery &

text mining of heterogeneous & large document sets & news with free software on the user's own server.

Elastic Search is a search engine based on the Lucene library. It provides a distributed, multitenant-

capable full-text search engine with an HTTP web interface and schema-free JSON documents.

A comparison of these two platforms in terms of our requirements is presented in Table 2.

Table 2. Comparison between Open Semantic Search and ElasticSearch.

 Open Semantic Search22 ElasticSearch23

Visualisation

1. Visualising like trend charts, word

clouds, interactive maps

2. graph/network analysis view24

3. Alternatively, enable the Open Source

ETL plugin for integration with the Neo4J

database and present visualisation with

Neo4j browser by Cypher graph query

language. via Kibana(Pie, Bar, Map, etc)

Builtin UI Features Solr-PHP-UI25 Search UI

Full source on

Github Yes Yes

Frontend

Technology Browser HTTP web interface

Server Technology

Solr or Elasticsearch open-source

enterprise-search Lucene

Storage Technology Inverted Index Inverted Index

Native RDF

native graph storage for graphs including

RDF triple stores index RDF data in JSON format

RDF Export (Only

for editor) Yes26 No

RDF Import Yes27 index RDF data in JSON format

Builtin OWL

import Yes28 No

SPARQL Support

1. Neo4j has Cypher that covers the need

for a structured graph query language

2. But there is workaround like 29

Elasticsearch provides a full Query

DSL (Domain Specific Language)

based on JSON to define queries

22 https://github.com/opensemanticsearch
23 https://github.com/elastic/elasticsearch
24 https://www.opensemanticsearch.org/doc/analytics/graph
25 https://www.opensemanticsearch.org/solr-php-ui
26 https://www.opensemanticsearch.org/etl/export/rdf
27 https://www.opensemanticsearch.org/connector/rdf
28 https://neo4j.com/docs/labs/nsmntx/current/importing-ontologies/
29 https://community.neo4j.com/t/sparql-for-neo4j/19583/3

https://community.neo4j.com/t/sparql-for-neo4j/19583/3
https://github.com/opensemanticsearch
https://github.com/elastic/elasticsearch
https://www.opensemanticsearch.org/doc/analytics/graph
https://www.opensemanticsearch.org/solr-php-ui
https://www.opensemanticsearch.org/etl/export/rdf
https://www.opensemanticsearch.org/connector/rdf
https://community.neo4j.com/t/sparql-for-neo4j/19583/3

ENVRI-FAIR DELIVERABLE D7.3 13 / 39

3.2.4 Knowledge Graph Visualisation

To present the content in the Knowledge Base with a knowledge graph visualisation, we investigate

several tools with network graph features. They are:

D3.js is a JavaScript library for manipulating documents based on data. Different kinds of data can be

bound to a DOM and then different kinds of functions may be executed on it. One of those functions

includes generating an SVG, canvas, or HTML visualisation from the data in the DOM. The complicated

part of D3 (or any embeddable library that doesn’t have direct Neo4j connection) is converting the graph

data into the expected map format for export. D3 expects two different collections of graph data - one

for nodes and one for links (relationships). Each of these maps includes arrays of properties for each

node and relationship, that d3 then converts into circles and lines. Version 4 and 5 of D3.js also support

force-directed graphs, where the visualisation adjusts to the user’s view pane.

Popoto.js is one kind of the tools that are embeddable tools with built-in Neo4j connections. This kind

of embeddable tool can be included as a dependency within an application and can easily be configured

and styled for an application and Neo4j. This tool can easily connect to an instance of the Neo4j graph

database using configuration properties and allows to style the visualisation based on nodes,

relationships, or specific properties. Popoto.js is a JavaScript library that is built upon D3.js.

Neo4j Bloom is a standalone product tool that helps data exploration and visualises data in the graph and

allows users to navigate and query the data without any query language or programming.

Grao.fo a tool for visually designing knowledge graphs with online, collaborative, real-time editing

features. Grafo has reused the existing WebVOWL standard rather than reinventing the wheel.

WebVOwl a web application for the interactive visualisation of ontologies. An example of using

WebVOWl can be found at30.

Several practical issues need to be considered when choosing from these tools. A comparison of these

tools in terms of the several practical issues is presented in Table 3.

Table 3. Comparison between Knowledge Graph Visualisation Options.

 Popoto.js31 D3.js32 Neo4j Bloom33 Grafo34 WebVOwl35

Open

source

Open source

licensed under

GNU General

Public License

v3.0

open source

licensed under

BSD license.

open source

licensed under

GPLv3.

No. offers a

Free/Student

tier with basic

functionality.

Open source

released under

the MIT license

RDF

support NA NA`

Yes, via the

neosemantics

(n10s) plugin.

supports

importing OWL

(RDF/XML)

and Turtle file

formats.

visualisations

are automati-

cally generated

from JSON files

into which the

ontologies need

to be converted

SPARQL

Support

JavaScript

naturally fits for

querying a

SPARQL

endpoint which

provides a

REST service

returning the

result in the

JSON format

JavaScript

naturally fits for

querying a

SPARQL

endpoint which

provides a REST

service returning

the result in the

JSON format

No, Neo4j has

Cypher that

covers the need

for a structured

graph query

language. No Yes

30 http://www.visualdataweb.de/webvowl
31 popoto.js
32 D3.js
33 https://neo4j.com/bloom/
34 http://gra.fo/
35 https://github.com/VisualDataWeb/WebVOWL

http://www.visualdataweb.de/webvowl
https://neo4j.com/bloom/
http://gra.fo/
https://github.com/VisualDataWeb/WebVOWL

ENVRI-FAIR DELIVERABLE D7.3 14 / 39

3.3 Gap Analysis

Here we revisit the requirements and analyse the gap for the tools or platforms we investigated in terms

of the requirements identified in section 2.

1. Compatible with Semantic Web technologies. As the most common type for knowledge

storage, representation, reasoning, the support of RDF is the core requirement in design and

developing our Knowledge Base. This requirement can include following specific options, RDF

import/export, RDF storage, owl import, SPARQL support, etc.

The two storage solutions (Apache Jena and Virtuoso) are triplestores that are dedicated to

storing RDF data, thus fully meeting the requirements of semantic web technology

compatibility.

Regarding the knowledge management solutions, as the comparison in Table 1 indicates, both

Semantic Mediawiki and Ontowiki are RDF compatible.

2. Semantic search & Query functionality. An interface for search and discovery of Knowledge

Base content should be provided, this could be the conventional keyword-based search or

faceted search. Rather than strict adherence to a single controlled vocabulary or keyword set, a

semantic search function is further expected to permit search based on ‘similar’ or ‘related’

terms.

Though the knowledge management tools investigated (like Ontowiki, Semantic Mediawiki)

allow users to explore, search and edit the content of the Knowledge Base via GUI tools, they

are still lacking easy user experience in terms of the technology required. The original purpose

of both Semantic Mediawiki and Ontowiki are semantic annotation of wiki pages, and as

Knowledge Base editor respectively.

3. Open and flexible knowledge ingestion. Due to the variance of source types in the ENVRI

community, various methods should be supported for knowledge acquisition, like form-based

manual RDF ingestion, Questionnaire-based RDF triple generation, existing RDF integration,

structured and unstructured information transformation, etc. Certain measures should be

considered to facilitate non-technical users adding knowledge in a straight-forward way.

As shown in Table 1, several knowledge management tools, like Semantic Mediawiki and

Ontowiki, support RDF import, which facilitates the ingestion of knowledge. However, to

prepare RDF triples, or transform the information needed into knowledge, some customised

tools needed to be designed and implemented considering the diversity of information sources

in our project.

4. Provenance and version control of the knowledge. Considering the typical case where

multiple users contribute to the Knowledge Base, provenance is of fundamental importance.

This especially refers to the tracking of individual additions, deletions, and updates and their

administration, i.e. approval, rejection, reversion.

As far as the considered knowledge management platforms are concerned, Ontowiki meets the

requirements by providing detailed user management and statement-level provenance for RDF

data, allowing to track and potentially edit individual user contributions to the Knowledge Base.

5. User friendly and customisable user interface. A clear and straight-forward user interface is

needed for users to fulfil their objectives, like query, (semantic) search. Advanced services

like comparison, recommendation are also needed for interested users. Considering the

difference between general public users and professional users, two different user interfaces

should be provided for them respectively.

As already analysed, although the knowledge management tools provide a GUI for search and

query, their targeted users are Knowledge Base administrators considering the technology

ENVRI-FAIR DELIVERABLE D7.3 15 / 39

barriers. For general users without much technological knowledge of the SPARQL or

triplestores, an easy and straight-forward user interface for searching and exploration is

expected to increase the user experience.

6. Scaling and increasing performance. To tackle the growing size of the Knowledge Base, a

choice between centralised or distributed storage should be considered. Also should be

considered includes the dynamic resource scheduling facing concurrent search/query requests.

Other features like collaborative editing are required to enable comment on contributions by

other users.

Apache Jena Fuseki doesn't currently support horizontal scale up, but there are

workaround solutions like by coordinating the updates from a staging server and

being a publishing (read-only) to the external clients.

Based on the comparison, it is clear that no one single solution satisfies all the requirements. The optimal

solution should be a combination of existing options and other softwares such as Blazegraph could be a

candidate.

4 System Design

In this section, we first present the architecture design of the Knowledge Base, then describe how it works

in several scenarios with corresponding sequence diagrams.

4.1 Architecture of KB

We will describe the Knowledge Base architecture using the multi view approach based on the ODP

approach [11,12,13,14]. This approach has also been used to develop the ENVRI RM.

Figure 4. An enterprise view of the envri Knowledge Base. The enterprise view highlights the

key stakeholders (namely communities in the ODP term) and their interaction scenarios with the

Knowledge Base. The numbered circles indicate the possible orders of the interactions.

In Figure 4, four key user types are highlighted:

1. End users may use the KB to find answers to their general questions about available sources of

data, services and tools, and to use the discovered information to perform further research

ENVRI-FAIR DELIVERABLE D7.3 16 / 39

activities using the other tools like Virtual Research Environments, or services like the RI

catalogues of data or services.

2. RI managers or operators may use the KB to check the status of the FAIRness of specific

repositories, or update the state of their own RIs. The update process often needs the KB tools

for ingestions of FAIRness output from the other tools, e.g. the assessment wizard tool.

3. RI developers may use the KB to check the existing technologies, e.g. those development

results in the ENVRI portfolio, or the demonstrators prepared for some known FAIRness gaps.

They can also publish or update the technical descriptions using the KB tools, like the tool

description online form.

4. Knowledge curator and the Knowledge Base operators may use the KB to ingest content

from new sources, and respond to the possible errors occurred during the ingestion, or during

the operation.

Based on those scenarios, we designed the functionality components of the Knowledge Base from the

computational views. Figure 5 shows the key components via three layers:

1. The interface layer atop contains components dealing with user related activities. The

Knowledge Base will be an open system for community users; the user management component

is not for acquiring and processing users’ personal information, but more for providing

customised user support based on their interaction or contexts. A user can log into the system

using an open identity provider. The User Interface (UI) components provide the mechanism

for users to interact with the application. They format data and render it into different

presentations to meet different users’ needs, and acquire and validate data entered by users.

2. The service layer abstracts the functionality that the Knowledge Base offers; it can be roughly

split into three sub-layers, namely:

● The Application sub-layer provides customised application logic (e.g., FAIRness gap

gnalysis, engineering support, or discovery knowledge from ENVRI community)

based on the data passed from the underlying discovery sub-layer, and passes those

results up to the User Interface Component.

● The Discovery sub-layer provides the functionality for searching the Knowledge Base,

ranking the results, and recommending relevant content.

● The Content sub-layer provides functionality for managing the content in the

Knowledge Base, typically in a pipeline covering: ingesting information,

transformation from information to knowledge, quality control of the knowledge

generation, CRUD (Create, Read, Update, Delete) of the Knowledge Base content, and

the provenance of these activities.

3. The storage layer at the bottom is responsible for data storing and access. The data storage

options needed in this project includes: RDF Triple Store and Inverted Index.

ENVRI-FAIR DELIVERABLE D7.3 17 / 39

Figure 5. Architecture layers.

Currently, information collected in the knowledge consists of two main parts, as illustrated in the Figure

6 below.

Figure 6. Knowledge Base content components.A Knowledge Base search engine is provided for

different end users to search different contents.

The structured data in the Knowledge Base is based on RDF, and mainly includes:

1. OIL-e (ontology of the ENVRI Reference Model) based ENVRI RI description,

2. Description of the service portfolio from the previous project, and the possible new ones in

ENVRI-FAIR,

3. FAIRness principles, and the results of the assessment of the ENVRI research infrastructures

(D5.1), and

4. Demonstrators for tackling the known gaps, e.g. those being identified during the FAIRness

assessment

ENVRI-FAIR DELIVERABLE D7.3 18 / 39

The versions of the structure data currently can be managed via version control systems. Currently

GitHub is used.

The dynamic data in the Knowledge Base will be ingested from different online sources of the ENVRI

communities. Figure 7 depicts the basic information flow of the knowledge ingestion.

1. A significant amount of KB relevant information is represented in human readable form,

residing in Wikis, other content management systems or even static Web-pages, in “offline”

text found in various documents such as books, project deliverables or scientific publications.

In the ENVRI-FAIR context, the research infrastructure websites are a good resource of related

information, including news/events, background knowledge, etc. The community websites, like

ENVRI36, ENVRI-FAIR37, also contain lots of related information, like news/events,

community introduction, community landscape, projects information, progress, etc. These

information sources have different formats, like webpage, word document, pdf file, etc.

2. Another approach to populate the KB would therefore be to process such free-text information

with the aim to extract structured, machine readable information. Named entity recognition

would represent a first step in this regard, while the application of more complicated Natural

Language Processing operations could be a valuable field of research in its own regard.

3. Information from the available catalogues of data and services. It should be clear that the

indexes generated from those sources will not aim to replicate the entire catalogues, but for

providing quick searching capability for community users. For some RI such information will

be already managed in RDF format and accessible from triplestores

Figure 7. Basic information flow of the knowledge ingestion.

4.2 How does it work

We use three sequence diagrams to explain how the Knowledge Base architecture works. Figure 8.

depicts how a user interacts with the functional components of the Knowledge Base to perform search

activities. In the scenario, a user can send questions to the Knowledge Base via the user interface

components, and those questions will be transformed as queries to the backend knowledge storage

component (including both RDF and indexes). The output will be sent back to the user after being ranked.

36 https://envri.eu
37 https://envri.eu/home-envri-fair/

https://envri.eu/
https://envri.eu/home-envri-fair/

ENVRI-FAIR DELIVERABLE D7.3 19 / 39

Figure 8. Search the Knowledge Base.

Figure 9. depicts how a technology provider (e.g. a RI data management service developer) shares the

technology via Knowledge Base using the description form (portfolio input tool) provided by the

Ingestion component. The ingest component and quality component will check the input and interact

with the user to store the validated input to the storage.

Figure 9. Describing a technology using the portfolio input tool provided by KB.

Figure 10 shows the basic activity sequence of a knowledge operator to ingest knowledge from different

sources. The ingestion pipeline may use API or interface of those information sources, for instance if

source is from GitHub, the git interface will be used. In this scenario, a Knowledge Base operator can

configure the pipeline using the user interface component, and responses to the possible errors generated

by the quality control component during the ingestion.

ENVRI-FAIR DELIVERABLE D7.3 20 / 39

Figure 10. Knowledge ingestion from different information sources.

5 Implementation

5.1 Current prototype

The Knowledge Base development follows an interactive approach, in which prioritised user stories have

been analysed, and technical choices were selected based on state-of-the-art review done in the section

3. In the current prototype, we use Ontowiki to manage the RDF triples and open semantic search to

develop the search tool for the Knowledge Base. A number of tools were developed for ingesting specific

knowledge, e.g. a technology description forms for describing service portfolio, interactive graph

visualiser for the search results, and dynamic online data ingestion pipeline. These tools will be described

in the following sections.

5.2 Knowledge storage

The comparison of existing RDF content management platforms summarised in Table 1 in section 3.2.2.

It was suggested to consider OntoWiki for managing RDF content. The main reasons for this decision

were as follows:

● Direct operation on RDF triples: Ontowiki can directly operate on a Triplestore as the

underlying storage layer and provides an API to populate it with RDF.

● Integrated User management and statement-level provenance: Ontowiki supports user

management with varying permissions and also offers a detailed create/update/delete-

history on RDF statement level.

● Named-Graph based separation of RDF content and administrative data: RDF data

ingested via Ontowiki is directly written as-is into the underlying Triplestore, while all

the administrative statements such as provenance etc. are stored separately.

● Plugin-based extensions: Ontowiki offers a framework for developing plugin

extensions

The choice of Ontowiki had a direct effect on the choice of the underlying Triplestore, since Ontowiki

provides a pre-configured connector to the Openlink Virtuoso data management system, which members

of the KB team already had experience with from previous projects. The open-source edition38 of

Openlink Virtuoso (Version 7.2.5.1) was therefore deployed for that purpose and configured for

Ontowiki (and vice-versa).

38 http://vos.openlinksw.com/owiki/wiki/VOS

http://vos.openlinksw.com/owiki/wiki/VOS

ENVRI-FAIR DELIVERABLE D7.3 21 / 39

5.3 Tools for ingesting knowledge

The population of the Knowledge Bases can take different routes. On the one hand, existing collections

of information can sometimes be transformed so that they can be “bulk” imported into the Knowledge

Base, which includes rearrangements and mappings of existing collections of structured information but

potentially also the extraction of structured content from unstructured sources such as free text, which

by no means an easy task considering the complexity in the natural language processing/understanding.

On the other hand, it is usually also possible to add Knowledge Base content manually, “fact by fact”,

though manual input can be slow, tedious and error-prone if not supported by dedicated tools. In the

context of the ENVRI Knowledge Base, it should be possible to provide content in both ways.

5.3.1 Data acquisition for service portfolio based on Web-input-forms

Emanating from the initial requirement to find a suitable structured representation for describing the

ENVRI Service Portfolio, the data model shown in Figure 11 was designed for representing information

about services (left), software (upper right), use cases (centre) and documents (bottom right). Considered

to be instantiated as RDF, it aimed at reusing existing related schemas as much as possible, with future

integration with other data sources in mind. While the data schema for services was mainly based on the

FITSM39 approach as implemented for the EOSC catalogue in eInfraCentral, the data schema for

software was derived from the Software Ontology (SWO) from the OBO Foundry universe. The simple

data schema for use cases was created from scratch and documents were represented using the standard

Dublin Core dcterms element set. A focus was put on reusing additional existing vocabularies for

properties, mainly schema.org, as much as possible. In order to foster interoperability on value level, the

eInfraCentral terminology40 for classifying services was reused wherever feasible.

Due to potential GDPR issues, the current version of the data model explicitly refrains from representing

dedicated person records, which would allow representing responsibilities in an efficient and reusable

way. It offers simple literals for entering the appropriate information instead, allowing users to enter less

sensitive information such as department names/email addresses, explicitly accepting potential

ambiguities in this regard. Moreover, for the sake of simplicity in the RDF representation, links between

the described entity records are currently expressed as simple triples and not as complex relationship

assertions, allowing faster querying and more intuitive understanding of the structure of the information

at the cost of reduced expressiveness. Depending on user feedback and experiences with using the data

model in practice could lead to changes in future data model revisions.

Figure 11. Data model for describing services, software, related use-cases and documents.

39 FitSM is a free and lightweight standards family aimed at enabling effective IT service management.
40 https://github.com/eInfraCentral/docs/blob/master/eInfraCentral_ServiceClassification_v2.0.xlsx

https://github.com/eInfraCentral/docs/blob/master/eInfraCentral_ServiceClassification_v2.0.xlsx

ENVRI-FAIR DELIVERABLE D7.3 22 / 39

The rdforms library was chosen as the tool to automatically create Web-input-forms for entering the

information outlined in Figure 11. This was mainly motivated by the open-source nature of the package,

its state of active development and the ability to represent custom constraints which could be handled by

extending predefined stubs in plugin-like handlers. Such custom constraints were crucial features which

enabled the creation of re-usable dynamic option menu components loading their available choices

directly from the Triplestore using standard SPARQL 1.1 requests. Table 4 provides a rdforms

specification snippet describing such a dynamic option menu loading class labels from an external

resource where the selected classes must all be a subclass of “programming language” (IAO_0000025).

Table 4. Example for rdforms template for dynamic option menu.

{
 "type": "choice",
 "nodetype": "RESOURCE",
 "property": "http://www.ebi.ac.uk/efo/swo/SWO_0000741",
 "cardinality": { "min": 1, "pref": "1"},
 "constraints": {"http://www.w3.org/2000/01/rdf-schema#subClassOf":"http://purl.obolibrary.org/obo/IAO_0000025"},
 "OntologyUrl": "http://90.147.102.53/OntoWiki/index.php/EnvriServicePortfoliowithexternalTerminology/",
 "label": { en": "Is encoded in"},
 "description": { "en": "Programming language(s) the software is encoded in" },
 "styles": ["multiline", "pathExpr"]
}

Figure 12. From rdforms specifications to triples.

Figure 12. provides a sketch of the “flow” from a rdform specification to the respective triples. Sets of

specifications as shown in Table 4 are read by the rdforms library and converted into sets of automatically

created html elements which operate on an RDF graph storing all user form inputs accordingly. The

resulting input graphs are submitted to Ontowiki, where the individual statements can be explored,

including a detailed history when they were added by whom. Ontowiki in turn writes the provided RDF

into the connected Virtuoso Triplestore which provides direct SPARQL access to the collected data.

5.3.2 From Questionnaire to FAIRness

The full process of how WP5 has collected FAIRness assessment results together with WP8-11 has been

described in D5.1. A short summary of the process follows here.

The questionnaire of the FAIR Convergence Matrix with 53 questions were used to collect information

from participating RIs. The GO FAIR team provided a spreadsheet of these questions with explanations

and example answers. In addition, references to the FAIR principles where appropriate were linked to

the questions. In addition to this approach, it was decided to use the FAIR Maturity Indicator (hereafter

FMI) ‘generation 1’ questionnaire with 25 questions.

ENVRI-FAIR DELIVERABLE D7.3 23 / 39

The surveys were distributed through the leads of the subdomains (WP8-11 leads) to representatives of

the participating RIs. The survey was conducted in the period between March and May 2019 using

Google Forms. All responses from the RIs were collected in a Google spreadsheet.

The answers (which were collected in spreadsheets-XLS as mentioned above) were converted, and the

extracted key information was transformed into a structured form in YAML (Yet Another Markup

Language) format, following a template also written in YAML. This format was chosen for its

conciseness and readability as well as for the fact that it requires minimal extra information to encode

answers. The sequence of the YAML attributes is aligned with the questions in RDM+. While making

this conversion the answers were translated as much as possible from free text to reference lists (same

label for same concept/responses). Concretely, a Knowledge Base was implemented in the form of a

triple store using RDF as the data model. Hence, as an additional step, the information in YAML was

converted into RDF. The YAML documents were converted into an RDF document (data.trig file) using

a fully automated script implemented in Python as a Jupyter notebook that can be executed on EGI

Notebooks service.

In the next phase of the project the exercise of assessment will be repeated, however in that case the DS-

Wizard will be used which will automatically have RDF triples as output.

5.3.3 Online content ingestion pipeline

The Search Engine of the Knowledge Base is implemented using the open semantic search technology;

it also enables end-users to ingest data from pre-existing datasets and Knowledge Bases. The data can be

the result of a SPARQL query and should be converted to a CSV format. Figure 13 illustrates the

interface for the ingestion of this type of data.

Figure 13. Ingestion of pre-existing datasets and Knowledge Bases.

ENVRI-FAIR DELIVERABLE D7.3 24 / 39

6 Demonstration

We will demonstrate the current Knowledge Base via four typical user stories:

1. As a data manager in a RI, I have to improve the FAIRness of my data, and I want to check if

other RIs face same problem or have had working solutions;

2. As a data management service developer, I developed a useful service, and I want to share it

with the community. Can I make the information available in the Knowledge Base, so that the

other colleagues can find it?

3. As a semantic web specialist, I want to develop tools for some new innovations, e.g., for

semantic search or recommendation. I want to check the content in the Knowledge Base, in

particular in the form of RDF, triples, and the end points etc.

4. As a user in the ENVRI community, I am curious what resources or services the infrastructures

provide, and I want to use the Knowledge Base to search relevant information;

6.1 FAIRness status sharing and gap analysis

A prototype is developed to support the discovery of gaps in FAIR principle implementation at the

granularity of RI repositories and the discovery of possible technology solutions to address such gaps.

The prototype can be accessed at the following address https://envri-fair.github.io/knowledge-base-ui/

and Figure 14 is a screenshot of the application.

Figure 14. Screenshot of the running the prototype for discovery of FAIR-ness gaps at the

granularity of RI repositories and corresponding Technology Demonstrators.

The list in the screenshot is dynamically created by querying the ENVRI KB using the OntoWiki

SPARQL endpoint. Indeed, by modifying the FAIR-ness Assessment of a repository of a particular RI—

which is functionality natively supported by OntoWiki—for instance the information on whether or not

the repository has machine readable provenance information, the interface automatically adapts to either

include or exclude the corresponding repository under the relevant FAIR principle (R1.2 in case of

provenance). By selecting an RI, the user interface presents a summary view for the RI. A further

https://envri-fair.github.io/knowledge-base-ui/

ENVRI-FAIR DELIVERABLE D7.3 25 / 39

example showing the summary of repositories belonging to Aerosols, Clouds and Trace gases Research

Infrastructure is presented in Figure 15.

Figure 15. Summary of related repositories of Aerosols, Clouds and Trace gases Research

Infrastructure.

6.2 Ontowiki as Knowledge Management Platform

As described in Section 3.2.2, Ontowiki was found to be a suitable RDF data management platform. A

test instance was configured to run at http://ontowiki.envri.eu/ and slightly customised to use the ENVRI

logo and to display the ENVRI RSS news feed at the front page, as illustrated in Figure 16 below. It

currently serves as a data gateway for, primarily, the facts added via forms, described in Section 6.2 and

the gap analysis data described in Section 6.1, based on the FAIRness analysis.

User accounts for Ontowiki can be provided upon request. No account is needed for read-only access.

Figure 16. Ontowiki User Interface.

http://ontowiki.envri.eu/

ENVRI-FAIR DELIVERABLE D7.3 26 / 39

Ontowiki was found to perform well as RDF “middleware” used to ingest data provided from the RDF

forms. Some issues were discovered regarding the cross-referencing of statements between Knowledge

Bases (=named graphs). A workaround published in a newsgroup provided a potential fix for static data

but would have to be extended for a continuously growing data collection. A possible solution would be

to store information which is expected to change/grow, e.g. the entity descriptions and the user

terminology collected from the RDF forms, in a common named graph and to configure Ontowiki filters

for its efficient navigation, while storing more static content, such as external ontologies, in separate

graphs. While Ontowiki supports flexible navigation and editing of data at the RDF statement level, the

interface is arguably not appropriate for the vast majority of RI managers or developers. Indeed, we

conducted some experiments with the atmospheric domain but RIs didn’t engage with the user interface.

This is to be expected since Ontowiki relies on a good understanding of the RDF data model. Moreover,

and more importantly, presenting information at the granularity of the RDF statement is typically

inadequate for high level information needs, e.g. discovery of FAIR gaps in the data centers of an RI.

We thus suggest that Ontowiki can act as an RDF-based middleware that powers high level user

applications and services. One important aspect of using Ontowiki to manage the generated RDF data

will be the question of versioning. While built-in features such as the statement-level provenance in

principle allow detailed tracing of changes/revisions of the provided data, a backup strategy using

external means should be considered as well. One straight-forward step would be to export complete

RDF dumps of the provided content in regular intervals and to track their versions in source code

repositories such as Github.

6.3 Describing new tools in Knowledge Base

The objective of this demonstrator was to enable users to add facts about RI-relevant services, software,

documents and related use cases to the Knowledge Base, without having to deal with complex data

formatting issues. It was implemented as an RDF-generating Web-form based on Rdforms described

above, using OntoWiki as the user and data management layer operating on top of a Virtuoso Triplestore.

Currently, there are four forms following the data model outlined in Figure 11, shown in Figures 17, 18,

19 and 20.

Software41 (Figure 17). Description of software loosely based on the Software Ontology (SWO). A

described software can use another software etc. enabling the description of complex dependencies. It is

possible to add one or more specific application scenario(s) to each description, which also includes IV

actions from the ENVRI RM.

41 http://90.147.102.53/rdforms/samples/software_description.html

http://90.147.102.53/rdforms/samples/software_description.html

ENVRI-FAIR DELIVERABLE D7.3 27 / 39

Figure 17. Describing software components.

Documents42 (Figure 18). Documents play multiple roles in the data model. On the one hand, a

document can be a “standalone” entity, such as a field manual, a book, etc. On the other hand, a document

can be part of a service, e.g. teaching material. Last but not least, a document can also be a publication

about an ENVRI service, software or use case. This has to be considered when adding information about

a document. Dedicated fields “Related ENVRI software” and “Related ENVRI service” should be used

when describing documents which were published about the respective service or software (i.e. a

scientific paper, a manual, etc), resulting in triples having the document as subject and the

software/service as object, while documents serving as components of a service should be linked from

the service, resulting in triples pointing from service to document.

42 http://90.147.102.53/rdforms/samples/document_description.html

http://90.147.102.53/rdforms/samples/document_description.html

ENVRI-FAIR DELIVERABLE D7.3 28 / 39

Figure 18. Describing documents.

Services43 (Figure 19) Service descriptions can target many different types of services, computational

but also “human 2 human”, such as teaching. Following the FITSM approach, their description is thus

separated into a common part which serves many different service types, and a “component” part which

links to the different building blocks, currently software or document. Therefore, software or documents

serving as such components must be described and stored before describing the service, in order to be

able to reference them from the service description “Software component” and “Document component”

fields.

43 http://90.147.102.53/rdforms/samples/service_description.html

http://90.147.102.53/rdforms/samples/service_description.html

ENVRI-FAIR DELIVERABLE D7.3 29 / 39

Figure 19. Describing services.

Use Case44 (Figure 20) Use cases are brief descriptions of deployment of services and/or software,

highlighting key contributions and/or results of the deployment. In order to describe a use case, the

related service or software should have been submitted to the TripleStore beforehand.

Figure 20. Describing use_cases.

All form interfaces provide (simple) elements to load existing entities and to submit the results. The latter

requires a user account for the Ontowiki instance. In addition, the current state of the input graph is

shown on the bottom left, the state of the custom user terminology graph on the bottom right, both

formatted as rdf/xml which can be copied for manual use in third party settings.

44 http://90.147.102.53/rdforms/samples/usecase_description.html

http://90.147.102.53/rdforms/samples/usecase_description.html

ENVRI-FAIR DELIVERABLE D7.3 30 / 39

In order to demonstrate the functional state of the rdforms-based RDF generation, eight service outputs

from the ENVRIPlus project - the D4Science Service Portfolio - were described using the available

forms. The resulting collection of RDF facts can be accessed in Ontowiki

(http://ontowiki.envri.eu/index.php/EnvriServicePortfoliowithexternalTerminology/), as shown in

Figure 21.

Figure 21. Eight services described using rdforms shown in Ontowiki.

As demonstrated, the current state of the rdforms-protoype allows users to describe services, software,

related use cases and documents in RDF without the need to take format-specific considerations into

account. Interlinking with existing Knowledge Base concepts is supported via a custom lookup widget

which can be activated by clicking on the “loupe+” symbols next to the relevant fields. When having a

valid Ontowiki user with correct permissions, users can submit their descriptions directly from the form

to Ontowiki, where their changes/additions get tracked accordingly. Existing descriptions can also be

loaded into each respective form. Next steps will include the refinement of the data model and the

improvement of the forms interface, e.g. by providing better search for existing entities.

6.4 Knowledge Base Search Engine

Though Ontowiki provides navigation functionality over the Knowledge Base, it mainly operates at the

RDF triple level, which poses strong technical requirements on users’ expertise. To facilitate the general

users to easily explore the Knowledge Base, we build the Knowledge Base Search Engine based on the

fundamental concepts and components of the Open Semantic Search. This demonstrator exemplifies the

search knowledge sequence diagram in section 4.2.

The search instance is available at http://search.envri.eu Figure 22 below illustrates the search interface.

http://ontowiki.envri.eu/index.php/EnvriServicePortfoliowithexternalTerminology/
http://search.envri.eu/

ENVRI-FAIR DELIVERABLE D7.3 31 / 39

Figure 22. The starting page of the Knowledge Base Search interface.

6.4.1 Search Results

By simply typing in a keyword and hit search button, a result list is returned and displayed as in the

following Figure 23.

Figure 23. An example of search results.

The results can currently be ranked based on their (1) relevance, and (2) publish date, as shown in Figure

24. The results can be sorted and suggested based on the search history of the end-users. In other words,

by storing and retrieving search queries of each user, in the meantime compatible with GDPR (General

Data Protection Regulation) requirements, the search engine can predict users’ interests and recommend

a set of search results. Note, the latter option is still under development, and it will be ready soon after

conducting research on the decision model for recommending search results to end-users.

ENVRI-FAIR DELIVERABLE D7.3 32 / 39

Figure 24. Ranking criteria enabled.

The end users can manipulate the search results by clicking on the “Advanced search” button to consider

the following search operators, as shown in Figure 25: (1) At least one word (OR), (2) All words (AND),

(3) Exact expression (Phrase). Moreover, the search results can be based on semantic search and fuzzy

search to include (1) other word forms (grammar & stemming) and (2) Synonyms and aliases.

Figure 25. Advanced Search options.

6.4.2 Search Categories

The following five search categories have been considered on the Knowledge Base search engine

(KBSE), as shown in Figure 26: (1) webpages, (2) Service Catalogs, (3) Research Infrastructures, (4)

Datasets, and (5) APIs. The first category's search results are based on the web pages, whitepapers,

scientific articles, fact sheets, technical reports, wikis, forums, videos, images, and webinars to map the

search queries. The KBSE crawls and indexes all webpages (unstructured knowledge) regarding Service

Catalogs, Research Infrastructures, Datasets, and APIs. Such unstructured knowledge is stored in the

Knowledge Base of the search engine as separated documents and retrieved when an end-user is looking

for a particular search query. The rest of the search categories can be employed to search for specific

results within the context of any of the named structured knowledge, consisting of Service Catalogs,

Research Infrastructures, Datasets, and APIs.

ENVRI-FAIR DELIVERABLE D7.3 33 / 39

Figure 26. An example of search categories enabled on the Knowledge Base search engine.

6.4.3 Visualisation

The Knowledge Base Search Engine enables end-users to visualise the unstructured and structured

knowledge in terms of ontologies and linked data. In other words, the search results are combined with

a graph that is rendered in a force-directed layout and represents the ontology to support end-users with

a better understanding and analysis of the underlying data. An example illustration is provided in Figure

27.

Figure 27. A graph representation of the search output.

ENVRI-FAIR DELIVERABLE D7.3 34 / 39

6.4.4 Thesaurus editor for editing, structuring & linking vocabulary or

dictionary of topics, concepts & names

Open Semantic Thesaurus Editor and Thesaurus Manager are the integrated Django (Python) based open

source web app as user interfaces for editing, linking, managing, and structuring a controlled vocabulary

or domain knowledge. So end-users can manage important terms, words or concepts, names, topics,

persons, organisations, or places in a custom thesaurus for editing names, entities, or concepts, their

alternate labels like aliases, synonyms, or typos and misspellings and its structure or relations like

hyponyms.

Thesaurus entries are used for automatic tagging for additional structure for analysis and named entity

extraction or named entity linking for exploratory search or as tags for news pipes or alerts. Based on the

thesaurus entries, the named entity tagger or named entity extraction can find the name or label, alternate

labels like synonyms and misspellings, and add the name (preferred label) to the configured facets for an

aggregated overview, interactive filters, and analytics. For example, if an end-user add the entity "Open

Semantic Search" with/to the facet "Software", she will be able to use this entity or name as an interactive

filter and will get an aggregated overview of the count of documents matching this entity while searching

for other queries. Additionally, using the alternate labels, aliases, or synonyms, the semantic search can

precisely find the terms the user searches for, but the search engine will find documents with alternate

terms like synonyms. Figure 28 illustrates the configuration of Open Semantic Thesaurus Editor and

Thesaurus Managerfor in our KBSE.

Figure 28. Open Semantic Thesaurus Editor and Thesaurus Manager configured in KBSE.

6.4.5 Optical Character Recognition results

The text stored in image formats like JPG, PNG, TIFF, or GIF (i.e., scans, photos, or screenshots) can

not be found by standard full-text search. The KBSE enriches metadata of images like filename, format,

and size, resulting from automatic text recognition or optical character recognition (OCR) by free, open-

source OCR software like Tesseract45. Since much information is not searchable by full-text search

because it is in graphical formats embedded in PDF documents or Powerpoint presentations (i.e.,

screenshots instead of text format), the KBSE extracts images from PDF files for automatic text

recognition (OCR), too. Figure 29 illustrates our settings on KBSE in terms of the OCR functionality.

45 https://github.com/tesseract-ocr

https://github.com/tesseract-ocr

ENVRI-FAIR DELIVERABLE D7.3 35 / 39

Figure 29. Settings for OCR in KBSE.

6.4.6 Index Datasources

The KBSE (re)indexes web pages regularly to keep its Knowledge Base always up to date. A setting

regarding indexing on KBSE is illustrated in Figure 30.

Figure 30. Index settings on KBSE.

ENVRI-FAIR DELIVERABLE D7.3 36 / 39

7 Summary

The development and operation of the ENVRI Knowledge Base will be continuous. It will grow during

the project while the development results and knowledge accumulate. In this summary section, we will

briefly discuss how the Knowledge Base effort is embedded in the project with the other development

efforts, and what will be the development agenda for the coming two years.

7.1 Embedded in community effort

The Knowledge Base development and operation has a clear dependency on the development effort from

the ENVRI subdomains and research infrastructures. Not only the Knowledge Base should play a role

for supporting developers from RIs to share best practices and to find existing solutions, but also the

ENVRI community provides valuable input to the Knowledge Base and keep the Knowledge Base alive.

Currently, the Knowledge Base team closely interacts with the other subdomain developers (via

workshops, meetings and work groups organised by subdomains), and the joint task forces at the cluster

level. The Knowledge Base core members or members of WP7 are directly involved in almost all the

tasks forces. Through members, there is valuable input of the catalogue of services (TF1), Authentication

and authentication (TF2), persistent identifier (TF3), triple store (TF4), license and usage track (TF5),

and ENVRI-HUB (TF6).

Moreover, the Knowledge Base team has also a close connection with the FAIRness assessment done

from WP5 in interaction with WP8-11.

The Knowledge Base team also closely interacts with semantic search work groups in sub domains, e.g.,

a semantic search use case in ACTRIS46, reported in the Semantic Search Working Group Final Report47.

7.2 Future development

The Knowledge Base will continue in the rest of the ENVRI-FAIR project. In the next phase, the

development effort will mainly focus on following aspects:

1. Continuous content ingestion and curation. The Knowledge Base team will improve the

knowledge ingestion tool, and continuously ingest the description (metadata) of high quality

results from the ENVRI community (e.g. task forces, sub-domain or RI developers), including

development results (e.g., best practices, software technologies, recommendations, updated

FAIRness assessment possibly generated by new tools) in the Knowledge Base, and make those

descriptions FAIR for the community.

2. Continuous improvement of the Knowledge Base based on the feedback received from the

community. Extra features e.g. for Knowledge Base discovery and recommendation, will be

further explored.

3. The development and operation of the Knowledge Base will also follow the software

engineering DevOps practices. The continuous testing, integration and deployment pipeline will

be established.

4. We will also extend the content maintenance to community specialists. In this way, we hope the

community will play a key role in the Knowledge Base.

46 https://github.com/xiaofengleo/actris
47https://docs.google.com/document/d/1zlPNB1Z1lSGPHAn88B4_DdjybvnGp5pYaIhBqV-

oc0A/edit?ts=5ec25164#heading=h.i58j0up5xhwk

https://github.com/xiaofengleo/actris
https://docs.google.com/document/d/1zlPNB1Z1lSGPHAn88B4_DdjybvnGp5pYaIhBqV-oc0A/edit?ts=5ec25164#heading=h.i58j0up5xhwk
https://docs.google.com/document/d/1zlPNB1Z1lSGPHAn88B4_DdjybvnGp5pYaIhBqV-oc0A/edit?ts=5ec25164#heading=h.i58j0up5xhwk

ENVRI-FAIR DELIVERABLE D7.3 37 / 39

8 References

1. Zhao, Z. (2020). Towards Interoperable Research Infrastructures for Environmental and Earth

Sciences: A Reference Model Guided Approach for Common Challenges (Vol. 12003). Springer

Nature. https://doi.org/10.1007/978-3-030-52829-4

2. Zhao, Z. et al., "Knowledge-as-a-Service: A Community Knowledge Base for Research

Infrastructures in Environmental and Earth Sciences," 2019 IEEE World Congress on Services

(SERVICES), Milan, Italy, 2019, pp. 127-132, doi: 10.1109/SERVICES.2019.00041.

3. Trochim, W. M., Donnelly, J. P., & Conjoint.ly. (2020 [First published in 2001]). Research methods

Knowledge Base. https://conjointly.com/kb/

4. Huber, R., Behnken, A., Carval, T., Delory, E. and Robin, C. (2010). D43-D44 - Data Infrastructure

Productive Version ESONET Knowledge Base. ESONET European Seas Observatory Network of

Excellence Project Deliverable. http://www.esonet-noe.org/content/download/42248/file/D43-

D44_final.pdf

5. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J., Eilbeck, K.,

Ireland, A., & Mungall, C. J. (2007). The OBO Foundry: Coordinated evolution of ontologies to

support biomedical data integration. Nature biotechnology, 25(11), 1251–1255.

6. Waagmeester, A., Stupp, G., Burgstaller-Muehlbacher, S., Good, B. M., Griffith, M., Griffith, O.,

Hanspers, K., Hermjakob, H., Hudson, T. S., Hybiske, K., Keating, S. M., Manske, M., Mayers, M.,

Mietchen, D., Mitraka, E., Pico, A. R., Putman, T., Riutta, A., Queralt-Rosinach, N., … Su, A. I.

(2020). Wikidata as a FAIR knowledge graph for the life sciences. BioRxiv, 799684.

https://doi.org/10.1101/799684

7. Vrandečić, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase.

Communications of the ACM, 57(10), 78–85.

8. Auer, S., Dietzold, S., & Riechert, T. (2006). OntoWiki – A Tool for Social, Semantic Collaboration.

In I. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, & L. M. Aroyo

(Hrsg.), The Semantic Web—ISWC 2006 (S. 736–749). Springer.

https://doi.org/10.1007/11926078_53

9. Frischmuth, P., Arndt, N., Martin, M. (2016). OntoWiki 1.0. In SEMANTiCS 2016, Poster & Demo

Session, http://ceur-ws.org/Vol-1695/paper11.pdf

10. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., & Vrandečić, D. (2014). Introducing Wikidata

to the Linked Data Web. In P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. Knoblock, D.

Vrandečić, P. Groth, N. Noy, K. Janowicz, & C. Goble (Hrsg.), The Semantic Web – ISWC 2014 (S.

50–65). Springer International Publishing. https://doi.org/10.1007/978-3-319-11964-9_4

11. ISO/IEC, "ISO/IEC 10746-1: Information technology--Open Distributed Processing--

Reference model: Overview," ISO/IEC Standard, 1998.

12. ISO/IEC, "ISO/IEC 10746-2: Information technology--Open Distributed Processing--

Reference model: Foundations," ISO/IEC Standard, 2009.

13. ISO/IEC, "ISO/IEC 10746-3: Information technology--Open Distributed Processing--

Reference model: Architecture," ISO/IEC Standard, 2009.

14. ISO/IEC, "ISO/IEC 10746-4: Information technology--Open Distributed Processing--

Reference model: Architecture Semantics," ISO/IEC Standard, 1998

https://doi.org/10.1007/978-3-030-52829-4
https://conjointly.com/kb/
http://www.esonet-noe.org/content/download/42248/file/D43-D44_final.pdf
http://www.esonet-noe.org/content/download/42248/file/D43-D44_final.pdf
https://doi.org/10.1101/799684
https://doi.org/10.1101/799684
https://doi.org/10.1101/799684
https://doi.org/10.1007/11926078_53
https://doi.org/10.1007/11926078_53
https://doi.org/10.1007/11926078_53
http://ceur-ws.org/Vol-1695/paper11.pdf
https://doi.org/10.1007/978-3-319-11964-9_4
https://doi.org/10.1007/978-3-319-11964-9_4

ENVRI-FAIR DELIVERABLE D7.3 38 / 39

9 Appendix 1: Glossary

Table 5. Glossary.

ACTRIS Aerosols, Clouds, and Trace gases Research InfraStructure network

Catalogue (Metadata) A collection of metadata, usually established to make the metadata available to a

community. A metadata catalogue has an access service.

CERIF Common European Research Information Format

CODATA Committee on data for Science and Technology

DOM Document Object Model (DOM) is the data representation of the objects that comprise

the structure and content of a document on the web.

ENVRI (1) The ENVRI Community of Environmental Research Infrastructures. (2) FP7

project on Implementation of common solutions for a cluster of ESFRI infrastructures

in the field of Environmental Sciences.

ENVRIplus ENVRIplus is a Horizon 2020 project bringing together Environmental and Earth

System Research Infrastructures, projects and networks together with technical

specialist partners to create a more coherent, interdisciplinary and interoperable cluster

of Environmental Research Infrastructures across Europe.

ENVRI-FAIR An EU-funded project which stands for ENVironmental Research Infrastructures

building Fair services Accessible for society, Innovation and Research.

FAIR Findability, Accessibility, Interoperability, and Reusability of digital assets

Elastic Search Elasticsearch is a search engine based on the Lucene library.

EOSC European Open Science Cloud

FITSM The name for a family of standards for lightweight IT service management (ITSM).

GDPR General Data Protection Regulation, a regulation in EU law on data protection and

privacy in the European Union and the European Economic Area.

GO FAIR A bottom-up international approach for the practical implementation of the European

Open Science Cloud (EOSC).

GUI A GUI (graphical user interface) is a system of interactive visual components for

computer software.

H2020 Horizon 2020, European level research funding scheme

Knowledge Base (KB) (1) A store of information or data that is available to draw on. (2) The underlying set

of facts, assumptions, and rules which a computer system has available to solve a

problem.

LifeWatch European e-Science infrastructure for biodiversity and ecosystem research

Metadata Data that describes other data. Metadata summarises basic information about data,

which can make finding and working with particular instances of data easier.

NetCDF A file format

RM-ODP Reference Model of Open Distributed Processing (RM-ODP) is a reference model in

ENVRI-FAIR DELIVERABLE D7.3 39 / 39

computer science, which provides a co-ordinating framework for the standardisation of

open distributed processing (ODP)

OIL-e Ontology of the ENVRI Reference Model

Ontology (In computer science and information science) an ontology is a formal naming and

definition of the types, properties, and interrelationships of the entities that really or

fundamentally exist for a particular domain of discourse.

Ontowiki A free and open-source semantic wiki application, meant to serve as an ontology editor

and a knowledge acquisition system.

Open Semantic Search A free software for building own Search Engine, an explorer for discovery of large

document collections, media monitoring, text analytics, document analysis & text

mining platform based on Apache Solr or Elasticsearch.

OWL Web Ontology language

Provenance The pathway of data generation from raw data to the actual state of data

RDA Research Data Alliance

RDBMS A software system used to maintain relational databases

RDF Resource Description Framework

RI Research Infrastructure

SPARQL SPARQL is an RDF query language—that is, a semantic query language for

databases—able to retrieve and manipulate data stored in Resource Description

Framework format.

Semantics The encoding of meaning using a formal language.

Semantic Mediawiki Semantic MediaWiki is an extension to MediaWiki that allows for annotating semantic

data within wiki pages, thus turning a wiki that incorporates the extension into a

semantic wiki.

Triple A triple is a data entity composed of subject-predicate-object

Triplestores A triplestore or RDF store is a purpose-built database for the storage and retrieval of

triples through semantic queries.

VRE virtual research environment

Wikidata A collaboratively edited multilingual knowledge graph hosted by the Wikimedia

Foundation.

W3C World Wide Web Consortium

WP Work Package

YAML A human-readable data-serialisation language.

