DicsC

PREPARE

H2020-INFRADEV-2019-2
Grant Agreement No 871043

DiSSCo Prepare WP D6.2

Implementation and construction plan of the
DiSSCo core architecture

Work package lead: Claus Weiland

Authors:

Sam Leeflang 0000-0002-5669-2769 Naturalis

Claus Weiland 0000-0003-0351-6523 Senckenberg Nature
Research Society

Jonas Grieb 0000-0002-8876-1722 Senckenberg Nature
Research Society

Mathias Dillen 0000-0002-3973-1252 Meise Botanic Garden

Sharif Islam 0000-0001-8050-0299 Naturalis

David Fichtmuller 0000-0002-0829-5849 Botanischer Garten und
Botanisches Museum
Berlin-Dahlem

Wouter Addink 0000-0002-3090-1761 Naturalis

Elspeth Haston 0000-0001-9144-2848 Royal Botanic Garden
Edinburgh

https://orcid.org/
https://orcid.org/0000-0003-0351-6523
https://orcid.org/0000-0002-8876-1722
https://orcid.org/
https://orcid.org/0000-0001-8050-0299
https://orcid.org/0000-0002-0829-5849
http://orcid.org/0000-0002-3090-1761
https://orcid.org/0000-0001-9144-2848

Version:

Version Date Contributors Comment
0.2 14/04/2022 Sam Leeflang Foundational draft of
the technical setup
for the DiSSCo
infrastructure
0.4 14/05/2022 T6.2 members Revised version,
added introduction
of openDS
1.0 (till) 19/05/2022 T6.2 members Elaborated status of
Claus Weiland openDS and
Wouter Addink preliminary work
from ICEDIG
(CW/WA), iterative
revision by T6.2
members
1.1 19/05/2022 Claus Weiland Final editing,
submitted to project
management as
V1.1
1.2 24/06/2022 Sam Leeflang, Resolved last
Wouter Addink, comments
Claus Weiland
Preface

This report details the system architecture for DiSSCo’s concept of the Digital Specimen,
which acts as a surrogate in cyberspace for a specific physical specimen’. This surrogate or
digital twin encompasses and provides persistent linking to relevant information artefacts,
derived or related to the physical specimen. The Digital Specimens are embedded in a FAIR
ecosystem of system architecture and services described in the following sections, since
specimen data cannot be FAIR by itself (as any data) if there isn’t an infrastructure which
implements policies, rules and procedures for FAIR.
Our achievements outlined in this report are based on earlier fundamental research work,
architectural planning and implementation work led by Alex Hardisty within the frameworks
of ICEDIG and DiSSCo Prepare, and also on input from the DiSSCo technical team and

! https://dissco.tech/2020/03/31/what-is-a-digital-specimen/

Dimitris Koureas. In particular our joint discussions between the technical team and Alex are
- besides his groundbreaking works on FAIR Digital Objects for specimen data - visible in
many parts of this text and have provided a clear guidance for the implementation and
construction plan of the core architecture outlined in this report. The architecture as
described underpins the nine protected characteristics for data management as described by
Alex Hardisty et. all in the DiSSCo provisional data management plan (Hardisty 2019).

Abstract

Work Package Deliverable 6.2 aims to propose an architectural overview of the core
components of the DiSSCo data infrastructure. This overview should provide clarity to
stakeholders and guidance for the development team. The architecture is based on the
earlier work done in the EC funded ICEDIG project in work package 6, discussions in the
DiSSCo Prepare Work Package 5 and 6 meetings, DiSSCo Prepare end-user services
development sessions and DiSSCo Prepare Technical Team meetings. The data
infrastructure aims to support mass digitisation, to provide a FAIR digital representation of
specimen data based on DiSSCo’s Digital Specimen concept. This approach provides rich
provenance information through the full data lifecycle and enables enrichment through
annotations and linking related data objects, with particular emphasis on machine
actionability and support for Al.

In total 23 different components were identified, grouped in 9 containers. Each component is
an independent unit built for its specific purpose. The components have been grouped in
containers, each aimed at providing a specific functionality. The communication between the
different components is based on events using queues as a way to decouple the
components.

In this document the function of each component is described as well as its role within the
broader container. We work through the architecture starting with the data providers, where
the data is generated. The provided data are collected by the translators, which convert it into
the generic openDS data format, based on community standards like Darwin Core. After
translation, the enrichment services are a vital part of the architecture as they provide an
automated way to enrich the data with additional information. Data is validated and stored
with the data processing services in the data storage layer. Data exposure goes through a
wide array of DiSSCo end-user services providing a range of functionalities to use and
annotate the data. Last but not least are several services aimed at orchestration, providing
new and updated data models or providing globally unique persistent identifiers. This wide
collection of services working together in unison will provide a stable but extensible
architecture for the DiSSCo Research Infrastructure.

Keywords

FAIR Digital Object, Distributed System of Scientific Collections, DiSSCo RI, openDS, Digital
Specimen, FAIR Digital Object, Digital Twin, Architectural overview, Data flow, Microservices,
Event driven, Auto-scalable, Stateless

INDEX

Preface

Abstract

Keywords

Introduction and objectives

DiSSCo Facilities
Digitization pipelines
Born digital specimen

DiSSCo Data ingestion container
Translator services
Integration with CMS based on events

DiSSCo Data Processing container
Processing service

DiSSCo Data Enrichment container

DiSSCo Data storage container
DO managing service
Persistent store
Indexing solution

DiSSCo services
Application Programming Interfaces (API)
European Loan and Visits System (ELViS)
Unified Curation and Annotation System (UCAS)
Collection Digitisation Dashboards (CDD)
Event Publisher
Digital Object Interface Protocol (DOIP)

DiSSCo Resolution system
Local Handle Registry
PID API

DiSSCo Modelling Framework
DiSSCo modelling Wikibase
Model publisher

DiSSCo Orchestration container
Orchestration frontend
Orchestration backend

Authentication and Authorization Infrastructure (AAl)

SSO and IAM provider
Conclusion

Acronyms,terms, and definitions

o ©o © © © 00 O W W BN

-_—

[
- O

-
N

A A A -
a o1 o A

R O QP G G
© 0000 N NO O

_
© © ©

N NN
o O o

N NN
RO -]

NN
NN

N DN
F

References

26

Introduction and objectives

This document aims to describe the setup for the DiISSCo’s technical infrastructure. Many of
the design decisions and architectural choices were influenced by the FAIR principles
(Wilkinson 2016) and the more technical implementation focused approaches of FAIR Digital
Objects (FDOs, De Smedt 2020) and Digital Object Architecture (DOA, Kahn 2006). At the
heart of this approach stands the Digital Specimen (DS), a FDO type for the biodiversity
domain acting as a digital twin in the internet for a specific physical specimen in a natural
science collection. The Digital Specimen encapsulates and persistently links to information
artefacts which are about the physical specimen like sequences, images and biochemical or
taxonomic determinations (Fig.1).

As it applies to all FDO types, a DS can achieve FAIRness only by embedding it into a FAIR
ecosystem (European Commission 2018). This ecosystem has to provide essential key
components including services for minting and resolving of PIDs (Hardisty 2021), repositories
to index and catalogue DS and their relations (Hardisty 2019b) as well as registries for
community-endorsed type specifications for DS and other curated biodiversity objects.

1.) Persistent Identifier (preferably handle like 20.5000.1025/f9dd3820670964cccf21\

/ iii.) Metadata \ “

descriptive index prov/context rights

iv:) Typed FDO content: Encapsulated
bitstream & set of links

#0121 (extractROI)
#0122 (updateTraitinfo) } >
#0123 (return MIDS info)
#0124 (update MIDS level) }N
#0125 (return DNAseq) \
#0126 (return gathering) “
[]

4 ods:tyoe: ODS&peVO.l
ods:name: "Hieracium kuekenthalianum”
ods:midsLevel: 1
ods:institution: "hitps://ror.org/01wz97s39",
ods:institutionCode: "FR",

k ods:material Type: "Dry - pinned” / |

Fig. 1: A Digital Specimen substantiating a FDO type for a natural science collection object
expressing the layered object structure of FDOs: (i) FDOs are identified by a PID resolvable
to a PID record associated with Kernel Attributes; (ii) via type-specific operations, these
attributes give access to (iii) metadata information, that enable self-contained acting of
machines according to (iv) typed content and based on decision between alternative
operations in a given context (machine actionability). The example shown here is based on a
machine learning pipeline for feature extraction (morphological traits) from a DS containing
image objects (Wittenburg 2022).

https://hdl.handle.net/20.5000.1025/f9dd382c670e64cccf21

Several of those core components were informed by global discussions within the natural
sciences collections and biodiversity informatics community and recommendations from the
Research Data Alliance (RDA, Islam 2020).

It is important to note that this is a living document and that the current setup is a draft.
Based on discussions, reviews, remarks and growing insights through pilot implementations
it will change and evolve. The ICEDIG project provided the design blueprint and the
provisional data management plan (DMP) for the DiSSCo architecture. While the setup of the
technical infrastructure is foreseen to evolve over time, the 9 essential characteristics for data
management that are described in the DMP should remain constant:

e Digital Specimen is the core component and the primary digital object type of the
DiSSCo architecture

Accuracy and authenticity of the digital specimen

FAIRness

Protection of data (legal regulations and community norms)

Preserving readability and retrievability

Traceability (provenance) of specimens

Annotation history

Determinability (status and trends) of digitisation

Securability (authentication, authorization, accounting, auditing)

A detailed overview of the entire core architecture is provided in Fig. 2, subsequent sections
review the infrastructure components involved and their workflow.2

Each component can generally be seen as a single application, although some components
can be deployed as multiple instances?®, possibly with slightly different functionality*. This is
shown in the image as the component with a postfix (X, Y, Z or 1, 2, 3). These different
applications of the same component might have different implementations, but are
considered at the level of this architectural overview as a single component due to their
similar functionality. An example is the translator services where different instances are used
for different data providers.

The lines are drawn from the action initiator to the action recipient. This means that when a
user uses a frontend, the User is the actor and the frontend the recipient. The arrow will be
from the user towards the frontend. When a component retrieves data from an API, the
component is the actor as it initiates the request, the APl is the recipient and will respond.
Components which work together to provide a certain broader functionality are grouped as
containers.® For example, in the data storage container, we have several components which
ensure that the data is persistently stored and searchable. All these components work
together to persist and retrieve data. Together they form the data storage container. Several
containers may contain only a single component. We will still contain them in a container as
more applications might be added to the container.

2 Based on the components level in the C4 model for visualising software architecture,
https://c4model.com/

% For horizontal scalability

* With the help of feature toggles, https://martinfowler.com/articles/feature-toggles.html
® Based on the container level in the C4 model for visualising software architecture,
https://c4model.com/

In this document we will follow the workflow from start to finish. In the overall diagram (Fig.
2), this means from left to right. Starting at the DiSSCo facilities, through data ingestion,
enrichment services, data processing and data storage towards DiSSCo services and the
end users. It will briefly describe each container and within each container, each component.
Below is the complete overview of all the components. It has been condensed to provide a
general overview. For each container a more detailed overview is added at the appropriate

chapter.

nnnnnnnnnn
ssssss

Fig. 2: Architectural overview of the DiSSCo data infrastructure

DiSSCo Facilities

Starting at the far left of Fig. 2 are the DiSSCo facilities. The DiSSCo facilities are defined by
A. Hardisty (Hardisty 2019) as:

“The geographically distributed collection-holding organisation(s) (i.e., natural science/history
collection(s)) and related third-party organisations that deliver data and expertise to the
DiSSCo Hub infrastructure, and which can be accessed by users via the DiISSCo Hub

infrastructure.”

The DiSSCo facilities are the data generators that will provide DiSSCo with the necessary
data. They also hold the authority over the data. There are three different types of facilities

that can generate data which are described below. All three different ways of data production
will need to be supported in the DiSSCo infrastructure

Collection Management Systems (CMS)

This group of applications are used to curate and manage already digitised specimen data.

Different DiSSCo facilities will use different data formats and access protocols when making
the data available and some institutions might not have a functional CMS at all, only relying
on spreadsheets or other forms of simple file storage. Access to this data is often possible
through data portals, aggregator ingestion endpoints such as IPT or BioCASe or less readily
through personal requests to system managers.

Digitization pipelines

Digitization pipelines such as mass-scanning workflows will generate new data which needs
to be stored and curated (Hardisty 2020). Rather than operating through a CMS intermediary,
this data may be directly or at least independently pushed to the DiSSCo infrastructure.
DiSSCo might play a role in the standardisation of this process or provide applications and
tooling for mass digitization. However as this document describes only the core infrastructure
of DISSCo, the digitization process itself is seen as out of scope for this document.

Born digital specimen

Born digital specimens are specimens which are digitally registered before they are
accessioned and physically added to a collection®. These specimens should be able to be
added directly into DiISSCo whereby the link with the physical specimen is maintained. This is
a particular challenge that distinguishes this data source from digitization pipelines. This way,
when further information becomes available, it can be added to the digital object. The
DiSSCo core infrastructure expects that the tooling used for the born digital specimen will
keep it up to date and facilitate links with specimen-related data such as those of chemical
analyses, DNA sequencing or annotations made in crowdsourcing platforms such as
iNaturalist.

DiSSCo Data ingestion container

The Data Ingestion function group handles data retrieval/delivery, ensures that the data can
be parsed to a DS and is sent to the processing services.

Translator services

Translators are the first step in the data ingestion process and the first point of entry into the
DiSSCo infrastructure. They need to retrieve data from a great variety of sources (the

6 DiSSCo will also handle destructive sampling requests (see user story) where researchers can
request specific specimens for DNA, microscopic or chemical analysis. Depending on the institution's
workflow, some of the digital data can be captured prior to accession and the physical specimen might
be destroyed. However, the relevant digital information needs to be stored and findable.

https://github.com/DiSSCo/user-stories/issues/28

DiSSCo facilities) in a variety of data models (Darwin Core, ABCD(EFG), local models, etc.)
with a variety of data exchange formats (JSON/JSON-LD, XML, CSV, etc.) and architectures
(REST, GraphQL, etc.). We will therefore design an application which can handle all these
different types of data and protocols. Based on the profile the application can be configured
to run the steps needed for the data retrieval and conversion. When a new protocol or data
model needs to be added we will only need to create a specific step for the retrieval or
parsing without the need to create a whole new application.

The main functions of the translator services are to connect to the DiSSCo Facility and
retrieve/receive the data. Then translate the data to valid openDS (and finally publish the DS
to a queue.

Fa":cr::gy «—Refrieves data— Translator X Publishes OpenDS to queue—» E
Y
Start process
Orchestration ; Orchestration
backend " “7"" frontend

Select dataset to retrieve

Administrator
Fig. 3: Component diagram translator service

Since the result of the process should be a DS, in the rest of the DiSSCo core infrastructure
all data exchanges will be in the openDS specimen format. The translators encapsulate all
differences between the data sources and unites them in a generic data model. This enables
us to use generic services in the rest of the DiSSCo infrastructure.

Integration with CMS based on events

In Task 6.1 a setup for deeper integration between the CMS and the DiSSCo core
infrastructure has been described. This would enable the infrastructure only to act based on
an event produced by the CMS. A detailed description can be found in the 6.1 Deliverable.’
The DiSSCo core infrastructure will provide a translator which can trigger based on an event.

" B D6.1 HARMONIZATION AND MIGRATION PLAN FOR THE INTEGRATION OF CMSs INTO T...

https://docs.google.com/document/d/1ststX5kvUPWtHdw4ozaYgoFGe8D4ms5ufVDAREroNUw

DiSSCo Data Processing container

The data processing container consists of services that handle inserting the data into the
data storage container, after checking versioning conflicts and triggering enrichment services.
At this point the data should already be a valid DS. The processing container currently
consists of two services, the processing service and the data storage service. The data
processing container will receive the highest load as each specimen change will flow through
these services. This means that it should easily scale to the necessary throughput.

Processing service

Starting from the processing service the data is unified. The data that the processing service
receives can come from different sources, for example from the translator services or the
enrichment services.

The processing service will check if the data received needs to be created or updated. If the
storage container already has the same specimen, (either based on DOI, other community
accepted GUID or on the combination of institutionCode/collectionCode/physicalSpecimenld)
data does not need to be updated. When the data is not yet available in the data storage
container we need to create the DS. In the case the new data differs from the existing version
we need to determine which part can and should be updated. Not all services will be able to
change all parts of the DS. For example, the authoritative section of the Digital Specimen can
only be updated by the authoritative source.

For new objects, the processing service might trigger enrichment services. In the
orchestration frontend service, administrators can select a particular enrichment service they
want to run on the newly created data.

The processing service is also tasked with validating the new or modified objects against the
openDS specification. The validation checks if all required fields are filled and if the correct
data types are used. This ensures that we only get consistent and reliable data in our data
storage container.

When data has been checked and validated we can store the data in the data storage
container by pushing it towards the digital object managing services. Handling any
exceptions coming from persisting the Digital Specimen needs to be captured and if possible
retried. When the processing service is unable to process the Digital Specimen we will add it
to a dead letter queue from which we can manually check the issue and reschedule it if
necessary. This ensures that no data is lost due to unexpected issues with either the
software or the hardware.

After successfully adding data to the data storage layer we need to create provenance
records of the actions. The processing service will also trigger creation of provenance
records and events to external systems.

In summary, the main functions of the data processing service are: Read the DS from the
queue and validate if the DS matches the JSON Schema present in the data storage

containers. Second, check if the DS is already present in the storage container and if not add
the DS as a new object. If it is already present and there is new or updated information,
update the DS. Third, if enrichment services need to be triggered, add the object to the
enrichment service queue. Lastly persist to DS in the data storage container and trigger the
creation of a provenance record.

Do
Managing Service

A

Retrieve
Object schema
!
Find existing object

Create / update object

Processing
Service

Publishes OpenDS to enrichtment queues

«—Fead queue—

anand)

anan{inh

Fig. 4: Component diagram processing service.

DiSSCo Data Enrichment container

The DiISSCo Data enrichment container is a container with services which add new data to
the DS. It consists of a variety of services all complying to a single rule. They have as input a
DS plus (conditionally) more accompanying digital objects like images. Output is the enriched
DS and, where appropriate, additional related annotation objects (Fig. 5).

What happens in between, whether it uses machine learning, manual input, community
participation or anything else does not matter to the DiSSCo core infrastructure as long as
they comply with the general rule DS in -> DS (plus annotation objects) out. In this way we
can decouple the services from the rest of the infrastructure and provide a larger degree of
freedom. A malfunctioning enrichment service will not have any impact on the rest of the
DiSSCo infrastructure.

The enrichment services are triggered by a message on a queue. This message contains the
DS. To help with the enrichment services the DiSSCo development team will create a

common library which will help with the retrieval, publishing and parsing of the messages.
This way the development of the enrichment services will only need to focus on the addition

of information.

ods:DigitalSpecimen

@id: (doi)

\' ods:MediaObject
@id: (handle)

@type: {ImageObject/ etc.
ods:digitalSpecimen
ods:mediaURL
ods:creator

cc:license

de(e):format (with custom

ods:derivedFrom

1

ods:AudioObject ods:VideoObject ods:ImageObject

ods:medial.ength ods:mediaWidth ods:mediaWidth
ods:mediaHeigth ods:mediaHeigth
ods:medialLength ods:mediaResolution
ods:videoFrameRate ods:mediaResolutionUni'

ods:hasAnnotations

ods:authoritative (a_section):

ods:curatedObject]D
ods:curatedObjectIDType
ods:midsLevel
ods:specimenName

ods:objectType

ods:extended

ods:supplementary

ods:media (i_section): ods:MediaObject

ods:institution: <ods:Organization=>

caclulateMIDS({)

getProvenanceRecords()

ods:Annotation

(Legend 3
Instance will be stored in
individual DOs

l:l Instances will be stored within other DOs'
json

---{> Class inheritance

— Object linking via handle or URL

oa http://wwww3.org/ns/oa#
\ /
. J

@id (handle)
ods:forMediaObject
ods:annotationType
oa:hasSelector
ods:body
ods:identifiedTaxonomy
ods:generatedBy

ods:sourceld

ods:EnrichmentWorkflow ‘

@id (handle)

dc:description

Fig. 5: Excerpt of the openDS class tree focussing on classes and properties relevant for
annotations. Annotation or enrichment operations like the outlined trait feature extraction
pipeline (Fig. 1) update either elements of the DS or trigger - in the context of subclasses of
ods:MediaObject - the creation of one or more annotation objects.

The main functions of the enrichment services are: Collecting messages from the queue
(library function), running the enrichment service, adding data to the DS and finally publishing
the enriched DS as a message to the queue (library function).

The result of the enrichment services will be a DS with additional information. This DS will be
published to the processing service queue (just as DS from the translator services) where it
will be validated and stored in the data storage container.

Two exemplary enrichment services have been created as a proof-of-concept of this
architecture. Both example services are enriching DS with images. The first enrichment

service reads the image binary (usually provided via a URL) and adds certain image
metadata information to the digital object (eg. image size, mime type, etc.).

Beforehand, the processing service has to check whether the DS has an image and whether
the data fields that the enrichment service can add do not exist already, and based on this
information add the DS to the specific queue where this enrichment service is triggered.

Enrichment '
€—Reads OpenDS Publishes OpenDS message—®
eads OpenlS message el Jul I¥|

anang)
ahand)

“—FReads OpenDsS message E;;ﬁ::;e;t Publishes OpenDS message—®

anang)
anangd)

Request endpaint

External Endpoint

anang)

Enrichment)
«—HhReads OpenDS message —— _—
P g Service 3 Publishes OpenDS message—»

anang)

Requires user input

User

Fig. 6: Component diagram enrichment services. Three different types, from top to bottom.
Internal enrichment service, enrichment service calling external endpoint, enrichment service
requiring user input (human in the loop).

The second exemplary enrichment service runs a previously trained convolutional neural
network created by Younis et al. (2020) on herbarium scans and detects 6 categories of plant
organs on the image. The detected plant organ types are returned as annotations together
with the DS to the queue. The handling of the annotations will most likely change over the

course of the development of the Unified Curation and Annotation System (UCAS, see
section below).

DiSSCo Data storage container

The data storage container is responsible to persistently store, index and retrieve data.
Within the DiSSCo core infrastructure we will use existing Open Source projects to provide
these functionalities.

DO managing service

The digital object managing service is responsible for coordinating the persistent storage and
indexing. As the hearth of the system it is important that this application is always available. It
should therefore be redundantly deployed to ensure that one instance is always up and
running, even during deployments, just as availability of this component should also be
horizontally scalable to handle a possible increased workload.

Persistent store

To store data for longer periods, a persistent store solution needs to be used. Both the
metadata (digital object) and the data (images, sounds, etc.) may be stored.

Model publisher Index Object PID Infrastructure
service storage
Inserts data Insert data
for indexing for storage
Inserts new schema
i Do —— Requests new PID
»>
o Saciiee 4———Reftrieve OpenD3s Elvis

A

Create / update object

Retrieve

Retrieve Ohbject schema
OpenDS !

Find existing chject

Processing

Orchestration service
backend

Fig. 7: Component diagram data storage.

Potentially the amount of data could grow to large dimensions which means that the storage
solution needs to be able to grow with the data. Besides storage capacity the uses of the
data will also grow, meaning the solution needs to be scalable based on the incoming
requests.

Indexing solution

For rapid searchability and data retrieval a indexing solution is used. This will ensure that all
the data and the fields are fully searchable. Even with large amounts of data, the time to find
specific items based on their properties should be minimal. A query language should be
available to run exact queries.

DiSSCo services

DiSSCo services will create a unique access point for integrated data analysis and
interpretation through a wide array of tools. These services will retrieve data from the system
and data access can be through different interfaces such as human activities, user interface
(UI), machine interactions, or an application programming interface (API). These services
and access points are containerised and can expand as new user requirements and access
methods are requested.

DiSSCo services

Event publisher ——

,Eo

External System

f

)

;

i

f

)

Calls Collection i
— Digitisation]

Dashboards]

API «— i
Unified Curation and v

T Annotation Service]

i

) User
Elvis Elvis |
Backend Frontend

Fig. 8: Component diagram DiSSCo services.

Application Programming Interfaces (API)

API’s are essential for data accessibility and usability. The DiSSCo core infrastructure will
expose its data via an API. This API is used both internally, for DiISSCo’s own data
visualisation, as externally. This enables external users to access the data programmatically
but also enables them to build their own data visualisation tools on top of the DiSSCo
infrastructure.

The API will provide several endpoints, each based on the best practices coming from the
JSON:API specification.® An important set of endpoints will be the retrieval of the data,

8 https://jsonapi.org/

https://jsonapi.org/

including bulk operations.® However as several end user services will provide additional
annotations, the API will also have endpoints for data annotation or suggested
modifications.

European Loan and Visits System (ELViS)

ELViS is another end-user aimed service. It provides a unified way to request visits, loans
and virtual access. Virtual access (VA) requests through ELViS provide digitisation on
demand as a new type of access, including support for collaborating on VA ideas and
proposal submission.

In line with other end-user services ELVIiS will also make use of the DiISSCo API. It will also
have the capability to annotate a Digital Specimen. When an item is on loan to another
organisation this information will be added to the Digital Specimen as an annotation. In this
way ELVIS provides new data to the data storage container. The new data will be published
to the processing queue so it can be picked up by the processing service. For further
information on Elvis see the Elvis system design."

DO -
Managing Service
s
Read DS
Create [update object
Retrieve APl
Object schema
!
Find existing cbject
Elvis Elvis
Calls generic AP Loans 4-Call API's— Loans 4—Request loan—
backend frontend
Processing
service User

Read queue Fublish modified D5 to queue

anand)

Fig. 9: Component diagram ELViS.

Unified Curation and Annotation System (UCAS)

UCAS is the main user interface on the DiSSCo data. It will enable the user to search and
find specific Digital Specimens. For authenticated users it will also provide functionality aimed
at curating and annotating the data. These will be sent to the authoritative party for

% https://github.com/DiSSColuser-stories/issues/213: “As a scientist | want to gather, compare, reuse
data from individual small scale e.g. single species studies so that | can do meta-analyses and find
large scale general patterns for this | need bulk data in a comparable format, a selective search and
export tool, links to other databases e.qg. GenBank, vegetation databases.”

® See some integration related user stories.

" B ELViS design document

https://docs.google.com/document/d/1sUWbcev46OqzgOLLip6tjBPJTNTy0P2ogDQ87vffuW8/
https://github.com/DiSSCo/user-stories/issues?q=is%3Aissue+is%3Aopen+label%3AMS52+
https://github.com/DiSSCo/user-stories/issues/213

evaluation. UCAS is built on top of the DiSSCo API, using the API for data retrieval and
modification actions.

Collection Digitisation Dashboards (CDD)

The collection digitisation dashboards are an example where collection information from the
data storage container is retrieved and presented in a dashboard to a user.'” The user can
gain insights into the status of the collection and the level of digitisation based on MIDS."
When new data is ingested through the data ingestion container and added to the data
storage container, the dashboards will be updated accordingly. The dashboards will only read
data from the DiSSCo API which exposes DiSSCo’s data. This data is then used to present
aggregated data in the form of charts and tables.

Event Publisher

To notify external systems of changes in the digital objects we will publish events. These
external systems can be CMS’s which can update their information with the new information
in DISSCo. Together with the event based translator this will create synchronisation between
the CMS and the DiSSCo infrastructure.

Do
Managing Service

Create [update object
Retrieve
Object schema
!

Find existing object

Processi . -
e ng —After processing send trigger to—» Event publisher ——FPublish event to CMS—;E
External System
Receives Update event
L]
=
o
=
©

Fig. 10: Component diagram event publisher.

However, the functionality is not limited to the CMS’s. Other external systems, such as data
aggregators like GBIF and GeoCase, can subscribe to events in the DiSSCo infrastructure.
This means they will be notified when information within the DiSSCo infrastructure changes
and react accordingly.

12 Currently two dashboards are running but not yet part of the infrastructure:

https://rebrand.ly/synth-cdd https://icedig.eu/content/policy-analysis
3 https://www.tdwg.org/community/cd/mids/

https://www.tdwg.org/community/cd/mids/
https://rebrand.ly/synth-cdd
https://icedig.eu/content/policy-analysis

Digital Object Interface Protocol (DOIP)

The DiSSCo services will offer a DOIP interface for external systems wanting to use this
protocol.™ Users should be able to add information to a free section in the DS. They can use
DOIP for retrieving and modifying DS. As we want to prevent open access to our data
storage container we will have a separate DOIP interface handling this communication. All
modified DS will be run through the data processing container before they are inserted into
the data storage container.

DiSSCo Resolution system

The resolution system is aimed at creating persistent identifiers for the digital objects within
the DiSSCo infrastructure.™ It is built based on the requirements provided by the DONA
foundation.® It will consist of several components which will work together to manage, create
and update the Digital Object Identifiers (DOI).

Local Handle Registry

The Local Handle Registry (LHS) will create, update and store the DOI’s. This will be an
instance of the local handle registry software provided by the Corporation for National
Research Initiatives (CNRI)."”” The DO managing service will communicate with the LHS to
register and update the handles. The Local Handle Registry access specifications, such as
network address, will be recorded and kept current in the Global Handle Registry, which
accordingly redirects clients to the appropriate LHS.

PID API

To enable users or external applications to request to mint a DOI we will create a PID API.
This API will enforce authentication and authorization to ensure that the user or application
has the correct rights to request to reserve or mint DOI's. The PID API will also validate and
add the required metadata that will be necessary for registering the DOI.

Global Handle
Registry
A
Synchronize
_DO . —Request new DOI—» Local !-Iandle <€—~Reserve DOI's— PID API €—Request reservation
Managing Service Registry 0

External System

'4 Digital Object Interface Protocol Specification v2.0
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
'S https://riojournal.com/article/67379/instance/6662391/

'8 https://www.dona.net/handle-system

7 https://handle.net/

https://handle.net/
https://www.dona.net/handle-system
https://riojournal.com/article/67379/instance/6662391/
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf

Fig. 11: Component diagram resolution system.

DiSSCo Modelling Framework

The DiSSCo Prepare Deliverable 5.2 is focused on the setup of a DiSSCo Modelling
Framework (DMF). This framework aims to create a workspace in which coherent and
documented data models can be created and reviewed. When a new data model has been
finalised it will automatically be published as a Schema in the data storage container. Other
applications needing the schema can retrieve it from the data storage container.

DiSSCo modelling Wikibase

The DiSSCo modelling Wikibase is the heart of the modelling framework. It is based on the
Wikibase setup which provides tooling such as a user interface, authentication &
authorisation management and persistent storage. For a complete overview see the
deliverable regarding the modelling framework (Fichtmueller 2022).

Model publisher

Besides the Wikibase the modelling framework ensures that new versions of the data models
are automatically published to the data storage container. This ensures that the rest of the
system will be able to use the new models in the validation and creation of the Digital
Objects.

Data afchitect

Creates / modifies
datamodel

DiSSCo modelling
wiki

Modification triggers
publisher

New/update schema DO

Model publisher of digital object Managing Service

Fig. 12: Component diagram DiSSCo modelling framework.

DiSSCo Orchestration container

To orchestrate the pipelines for data retrieval and enrichment an orchestration container will
be implemented. This container will ensure that other services will be triggered and their

process will be monitored. To enable persistent storage of state a storage solution will be
used.

Orchestration frontend

The orchestration frontend will provide administrators with the ability to schedule translator
and/or enrichment services. For example an administrator can select to translate a certain
dataset by using an application which requests its API. For this a form will be filled in which it
can map elements of the API response to the appropriate fields in the openDS data model.
The administrator can also select to run one or more enrichment services over the retrieved
data set.

For already existing data sets the data enrichment services can be scheduled for the
complete or a part of the collection (based on query parameters). This ensures that when
new enrichment services are developed these can be run on existing DS.

Besides triggering services, the user will also be able to view the progress of the running
services and the status of the service. This way the administrator can review if the dataset
was successfully retrieved and enrichment services are completed.

Orchestration backend

The orchestration backend is responsible for triggering the requested services (coming from
the frontend). It has two main paths, the scheduling of translator services and the triggering
of enrichment services.

For the scheduling of translator services the orchestration backend will create a new
translator and monitor its progress. The translators are all running within the DiSSCo core
infrastructure and therefore under the DiSSCo control. The translators will regularly report
their progress back to the orchestration service (by publishing an event) so that the
administrator can monitor the progress. The orchestrator will also monitor the container and
regularly check if it is still running and active.

Do
Managing Service

Retrieve selected DS

Orchestration . Orchestration Publishes DS
. —Call API's—» backend to enrichtment queues

anangiih

Select enrichtment services to use on dataset

Administrator

Fig. 13: Component diagram orchestration service, in specific the data enrichment trigger.

For the enrichment services the orchestrator will retrieve the requested DS and publish them
to the relevant enrichment queues. The enrichment services are not in direct control and not
necessarily part of the DiSSCo infrastructure. These services are more decoupled from the
overall architecture. By retrieving the DS by the orchestrator (instead of the individual
enrichment services) the enrichment services don'’t require any knowledge or connection to
the data storage container. For the enrichment services retrieving the progress will be more
difficult as it will be difficult for the enrichment services to report back. A solution for this will
need to be devised.

Authentication and Authorization Infrastructure
(AAl)

Authentication and authorization plays a key role for all services in the infrastructure.
Authentication refers to the process of signing in as a registered user whereas authorization
refers to the rights and permissions to perform certain actions a user has. From the user’s
perspective it is desired that a user can login into all DiSSCo services with the same
credentials (single sign on, SSO). Another important feature is identity and access
management (IAM) which means the management of a user’s details and permissions within
the system.

SSO and IAM provider

A single container provides both, SSO and IAM, for all other services in the DiSSCo
infrastructure. Whenever a user is required to login in one of the end user services, they will
be redirected to the login page of the SSO and IAM container. This can by itself make use of
external SSO providers, so the user can choose to login for example with their eduGAIN,
ORCID or Google account. After logging in for the first time an entry is created for every user
in the DiISSCo SSO’s internal database. When a user has logged in successfully, they get
redirected to the website of the original service they requested, together with a signed JSON
web token (JWT). The JWT is defined in RFC 7519 and is an encoded JSON object which
holds the claims of the user'® (e.g. user details, roles, issuer of the token).

The DiSSCo service that receives the JWT must previously be made aware of the public key
of the issuing Keycloak server. The service uses the public key to verify the JWT and that it
has not been tampered with. JWTs can be signed, encrypted or both. If it is only signed,
anyone can decode the token and read its content. If the content is considered to be
sensitive information, the JWT should be sent encrypted.

User roles and groups will be managed in the SSO and IAM provider container and included
in the JWT which gets transferred to each end-user service. However the actual evaluation of
authorization, e.g. “is user A (having role B) allowed to perform action C” will be done in each
service, based on the roles and group memberships a user has. A good documentation of
the user roles within DiISSCo and their associated permissions in each service is required.

'8 https://tools.ietf.org/html/rfc7519

https://tools.ietf.org/html/rfc7519

DiSSo's SSO & IAM

| provider '
P f ORCID, etc.
L Groups
....... | Assign 2 (sers i |
! — |
Lo Roles : i
Obtain public key for token validation
Login to obtain JWT
Perform action .

''''' S _ e sk s

: Evaluate permissions F DiSSCo services, €.9.:

1 H 3 VIS

. Valdatetoken Loans

Backend / middleware

T i DS Explorer I_E-,—)

Send JWT in request

[Gl - User

Fig. 14: AAl flow diagram.

Conclusion

The DiSSCo Core Infrastructure consists of several components working in close relation
with each other. Each of these components has its own distinct task and goals. The glue
between the services is formed by queues on which events can be published or consumed.
By decoupling the different services into an event driven architecture we can easily scale with
the amount of data that is generated. This scalability ensures that we can perform at peak
moments, but also scale down on moments of quietness.

Preparing for the future is one of the main challenges. Developing an infrastructure which is
still relevant decades from today is difficult, the future cannot be predicted. However by
decoupling the applications we can easily replace a component in the ecosystem. Minimising
downtime due to the stateless character of the services creates space for fast and early
releases.

Through these principles, the DiISSCo Prepare Work Package 6 team has tried to identify a
comprehensive architectural blueprint for the DiSSCo Research Infrastructure. Implementing
the infrastructure in the coming years will provide further feedback on the choices made.
Only practice makes perfect, changes should be promoted rather than prohibited. By using
an agile mindset combined with an agile architecture we are ready to set up the DiSSCo
Research Infrastructure.

Acronyms,terms, and definitions

Acronym Term Definition in the DiISSCO context
ABCD Access to Biological Collection Comprehensive standard for access to
Data and exchange of data about specimens
and observations.

ABCDEFG Access to Biological Collection ABCD extension that provides various

Databases Extended for terms relevant for geoscientific collection
Geosciences objects.

AC Audubon Core Set of vocabularies for the representation
of metadata for biodiversity multimedia
resources and collections.

BioCASe Biological Collection Access Meant in this context is the BioCASe

Service Provider Software, a data binding
middleware that allows publishing of
multiple data resources of a provider with
a single web service in ABCD format.

CD Collection Descriptions Data standard for describing collections of
natural history materials including
information about access and usage of
specimens.

DOA Digital Object Architecture DOA introduces the concept of a digital
object, which forms the basis for the
architecture by specification of three key
components: Identifier/resolution system,
repository system, and registry system.

DS Digital Specimen Digital Twin of a physical specimen in a
collection, encapsulates and persistently
links to information artefacts derived from
the physical specimen such as
sequences, images and taxonomic
determinations.

DMF Di Modelling Framework An instance of Wikibase where the
DiSSCo data model is being developed.

DwC Darwin Core Framework of standards to compile and
mobilize biodiversity data from varied and
variable sources.

FDO FAIR Digital Object FDOs are abstracted data objects
encapsulating content, descriptive
metadata and globally resolvable and
persistent identifiers in compliance with
the FAIR principles.

GBIF Global Biodiversity Information Networked data infrastructure funded by

Facility

the world's governments aggregating data

https://abcd.tdwg.org/
https://abcd.tdwg.org/
https://github.com/tdwg/efg
https://github.com/tdwg/efg
https://github.com/tdwg/efg
https://www.tdwg.org/standards/ac/
https://www.biocase.org/
https://www.biocase.org/
https://www.tdwg.org/community/cd/
https://www.dona.net/digitalobjectarchitecture
https://dissco.tech/2020/03/31/what-is-a-digital-specimen/
https://modelling.dissco.tech/
http://rs.tdwg.org/dwc.htm
https://fairdo.org/
https://www.gbif.org/
https://www.gbif.org/

about all types of life on Earth.

ICEDIG Innovation and Consolidation for Project which provided essential blueprints
Lar le Digitisation of Natural | and capacity enhancements to make
Heritage DiSSCo operational with special emphasis
on mass digitisation and subsequent
access to all related data

IPT GBIF Integrated Publishing Toolkit | A free, open source software tool used to
publish and share biodiversity datasets
through the GBIF network

JSON \Y ript Object Notation Lightweight, text-based,
language-independent interchange format
for structured data.

JSON-LD JSON for Linking Data JSON-LD is a syntax to serialise Linked
Data in JSON and can therefore be used
as an RDF syntax.

JWT JSON web token An encoded JSON object which transports
information about user authentication and
roles.

LD Linked Data Set of methods to publish structured and
connected data involving i.a. controlled
vocabularies and ontologies to enable
machine-interpretability of data.

MIDS Minimum Information about a Specification defining information

Digital Specimen elements for graded digitization levels of
physical specimens.

openDS Open Digital Specimen Specification providing the set of elements
to model Digital Specimen (and other
curated biodiversity objects) as typed data
objects compliant with FDO specifications.

RDF Resource Description Framework Standard data model of the Semantic Web
to model resources and statements about
those.

OWL Web Ontology Language Decision Logic-based language enabling

formal modelling of types of resources and
their relationships.

https://www.dissco.eu/icedig/
https://www.dissco.eu/icedig/
https://www.dissco.eu/icedig/
https://www.gbif.org/ipt
https://datatracker.ietf.org/doc/html/rfc7159
https://json-ld.org/
https://datatracker.ietf.org/doc/html/rfc7519
https://www.w3.org/DesignIssues/LinkedData.html
https://github.com/tdwg/mids
https://github.com/tdwg/mids
https://github.com/DiSSCo/openDS
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/owl2-primer/

References

De Smedt, K., Koureas, D. and Wittenburg, P., 2020. FAIR digital objects for science:
from data pieces to actionable knowledge units. Publications, 8(2), p.21.

https://doi.org/10.3390/publications8020021

European Commission, Directorate-General for Research and Innovation, Turning FAIR into
reality : final report and action plan from the European Commission expert group on FAIR
data, Publications Office, (2018), https://data.europa.eu/doi/10.2777/1524

Fichtmueller D. & Guntsch A. (2022) DiSSCo Prepare Deliverable 5.2 "DiSSCo Modelling
Framework". https://doi.org/10.34960/e3nv-zh69

Glockler F, Pim Reis J, von Mering S, Petersen M, Weiland C, Dillen M, Leeflang S, Haston
E, Addink W, Fichtmiller D (2021) DiSSCo Prepare report D6.1 Harmonization and migration
plan for the integration of CMSs into the coherent DiSSCo Research Infrastructure - MfN

WP6/T6.1. https://doi.org/10.34960/366d-sf49

Grieb J, Weiland C, Hardisty AR, Addink W, Islam S, Younis S, Schmidt M (2021) Machine
Learning as a Service for DiSSCo’s Digital Specimen Architecture. Biodiversity Information
Science and Standards 5: e75634. https://doi.org/10.3897/biss.5.75634

Hardisty, AR. (2019). Provisional Data Management Plan for DiSSCo infrastructure.
Deliverable D6.6. Helsinki: ICEDIG. http://doi.org/10.5281/zenodo.3532937

Hardisty AR, Lannom L, Koureas D, Addink W, Weiland C (2019b) ‘The Last Mile’: The
registry behind the identifier. Biodiversity Information Science and Standards 3: e37034.

https://doi.org/10.3897/biss.3.37034

Hardisty AR, Addink W, Glockler F, Gintsch A, Islam S, Weiland C (2021) A choice of
persistent identifier schemes for the Distributed System of Scientific Collections (DiSSCo).
Research Ideas and Outcomes 7: e67379. https://doi.org/10.3897/rio.7.e67379

Hardisty A, Saarenmaa H, Casino A, Dillen M, Gddderz K, Groom Q, Hardy H, Koureas D,
Nieva de la Hidalga A, Paul DL, Runnel V, Vermeersch X, van Walsum M, Willemse L (2020)
Conceptual design blueprint for the DiISSCo digitization infrastructure - DELIVERABLE D8.1.
Research Ideas and Outcomes 6: €54280. https://doi.org/10.3897/ri0.6.e54280

Islam, S., Hardisty, A., Addink, W., Weiland, C. and Gléckler, F., 2020. Incorporating RDA
outputs in the design of a European Research Infrastructure for natural science

collections. Data Science Journal, 19(50), pp.1-14. https://doi.org/10.5334/dsj-2020-050

https://doi.org/10.3390/publications8020021
https://data.europa.eu/doi/10.2777/1524
https://doi.org/10.34960/e3nv-zh69
https://doi.org/10.34960/366d-sf49
https://doi.org/10.3897/biss.5.75634
http://doi.org/10.5281/zenodo.3532937
https://doi.org/10.3897/biss.3.37034
https://doi.org/10.3897/rio.7.e67379
https://doi.org/10.3897/rio.6.e54280
https://doi.org/10.5334/dsj-2020-050

Kahn R, Wilensky R (2006) A framework for distributed digital object services. Int J Digit
Libr 6(2): 115-123. https://doi.org/10.1007/s00799-005-0128-x

Wilkinson, M., Dumontier, M., Aalbersberg, |. . The FAIR Guiding Principles for scientific
data management and stewardship. Sci Data 3, 160018 (2016).

https://doi.org/10.1038/sdata.2016.18

Wittenburg, P, Anders, |, Blanchi, C, Buurman, M, Goble, C, Grieb, J, Hardisty, AR, Islam,
S, Jejkal, T, Kalman, T, Kirkpatrick, C, Lannom, L, Lauer, T, Manepalli, G, Peters-von
Gehlen, K, Pfeil, A, Quick, R, van de Sanden, M, Schwardmann, U, Soiland-Reyes, S,
Stotzka, R, Trautt, Z, Van Uytvanck, D, Weiland, C and Wieder, P 2022 FAIR Digital
Object Demonstrators 2021. Zenodo. https://doi.org/10.5281/zenodo.5872645

Younis S, Schmidt M, Weiland C, Dressler S, Seeger B, Hickler T (2020) Detection and
annotation of plant organs from digitised herbarium scans using deep learning. Biodiversity

Data Journal 8: €57090. https://doi.org/10.3897/BDJ.8.e57090

https://doi.org/10.1007/s00799-005-0128-x
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.5281/zenodo.5872645
https://doi.org/10.3897/BDJ.8.e57090

