
DiSSCo Prepare WP D6.3

A generalised set of API specifications for
interaction with the DiSSCo core architecture

Work package lead: Claus Weiland

Version 1.0 [20.01.2023]

Authors:

Sam Leeflang 0000-0002-5669-2769 Naturalis Biodiversity
Center

Claus Weiland 0000-0003-0351-6523 Senckenberg Nature
Research Society

Sharif Islam 0000-0001-8050-0299 Naturalis Biodiversity
Center

Matthias Dillen 0000-0002-3973-1252 Meise Botanic Garden

Soulaine Theocharides 0000-0001-7573-4330 Naturalis Biodiversity
Center

Ref. Ares(2023)686024 - 30/01/2023

https://orcid.org/
https://orcid.org/0000-0003-0351-6523
https://orcid.org/0000-0001-8050-0299
https://orcid.org/0000-0002-3973-1252
https://orcid.org/0000-0001-7573-4330


Abstract
Application Programming Interfaces (APIs) form the glue between all the different DiSSCo
services. They are the main vehicle for data exchange between machines. Additionally, users
may want to request or build their own applications on top of the APIs. It is therefore
essential to the success of DiSSCo that it provides stable, simple and well documented APIs.
This deliverable describes the strategy through which DiSSCo aims to achieve this goal.
DiSSCo will leverage established industry standards as much as possible. Adhering to
generic specifications such as the JSON:API specification helps to build predictable and
reliable APIs. DiSSCo recognizes that different types of users and software agents might
require different types of endpoints. Hence, in addition to simple JSON response, we will also
provide the option for users to request JSON-LD. DiSSCo might also implement an
asynchronous API for larger datasets, where we will notify the user when their request is
ready to be collected.
Documentation will leverage the power of OpenAPI v3 in combination with a Swagger
endpoint for human readability. FDO Types and openDS term descriptions will provide
documentation on the data model both for machines and for users.
APIs are entry points into DiSSCo’s system and therefore prime points of attacks. To mitigate
these attacks, DiSSCo will implement up-to-date security following the latest guidelines.
While the data in DiSSCo will be as open as possible, we will store non-public information.
This information will only be accessible for authenticated and authorized users. For the
implementation, DiSSCo will follow the guidelines of OAuth2 in combination with OIDC.
By building on top of existing standards DiSSCo hopes to provide predictable and stable
APIs. These APIs will be the building blocks used to build DiSSCo’s services providing
services for our end users.

Keywords
FAIR Digital Object, Distributed System of Scientific Collections, DiSSCo RI, openDS, Digital
Specimen, Application Programming Interface, JSON:API, JSON-LD, DOIP, data exchange,
security.



INDEX
Abstract 2

Keywords 2

Introduction and objectives 4

Technology Stack 4
Relational database 4
Indexing Solution 5
Data derivatives 5
Java Backend 5
Routing 6

General set of APIs 7
API for JSON:API 7

Example 7
API for JSON-LD 8

Example 8
API for (Cloud)events 9

Example 9
DOIP 10

Example 10
Asynchronous endpoints 10

Versioning 11

Documentation 11
OpenAPI v3 11
Swagger 12
FDO Types 12
Term documentation 12
Metrics 12

Environments 12

Security 13
Certificate/ciphers 13
AAI 13
Privacy policy 14
Rate limiting 14

Discussion and Outlook 14

Acronyms, terms, and definitions 16

References 19



Introduction and objectives
The goal of DiSSCo is to improve the digitization, mobilization and subsequent use of
collection data in the natural history domain. This generates a massive amount of specimen
data which we will store, annotate and present. All this information needs to be findable and
easily accessible for both humans and machines. That is where deliverable 6.3 comes into
play.

In this deliverable, we will describe our strategy regarding exposing data through Application
Programming Interfaces (APIs). DiSSCo will provide a set of generalised APIs through which
data can be requested. These APIs will be used as a backend for several of DiSSCo services
such as UCAS and ELViS, but can also be used by new service providers.

For the generalised set of APIs we try to build upon various standards. Some are domain
specific, others are generic specifications. We will lean heavily on the recommendations
written in BiCIKL Deliverable 1.3 “Best practice manual for findability, re-use and accessibility
of infrastructure” (Addink 2022). This deliverable describes a set of best practices for APIs
based on the input of the major infrastructure in the biodiversity domain. DiSSCo will follow
these guidelines and only diverge from them where there is an explicit need.

It is important to remember that, as with all technical documentation, this document is a living
document. During development of both the pilots and the final infrastructure, implementation
might drift from this document. New insights gained during development might indicate that
we have missed certain issues, problems, specifications and that changes make sense.

Technology Stack
The DiSSCo technology stack for data exposure consists of several components each with
its specific functionality. Knowing the underlying technical implementation might help to
understand the possibilities as well as the limitations of the DiSSCo infrastructure. During the
development of DiSSCo this set of tools might change, depending on the use cases and the
experience gained.

Relational database
DiSSCo’s data storage is based around the openDS which is a specification of Digital
Specimen and other related object type definitions which are essential to mass digitization of
natural science collections. For the initial implementation of the storage of the openDS data a
document store was used. This type of storage uses a key, in this case the PID, and a value,
the openDS, to store and lookup data.

After piloting this setup it was discovered that with the growing of the object became
increasingly hard to manage. More and more information was added to the single object
which made retrieval difficult. It was also difficult to search on information contained in the
object, you could only search when the PID was known. Eventually it was decided to
separate the different parts of the Digital Specimen (such as the Digital Media Objects, the
Annotations and the Provenance) and to store these separately.



This made us rethink the data architecture and move DiSSCo’s data to a relational database.
However, not all our data is structured and normalizing all information will be unfeasible. That
is why we will make use of the JSON column functionality implemented in most relational
databases. This effectively creates a hybrid variant between a document store and a
relational database. It has all the advantages of a relational database with the benefits of the
stored capacities of a document store.

This approach does mean that the openDS information is split up over several tables. They
are separate FAIR Digital Objects (FDO’s) with their own PID and their own versioning. For
example, one will hold the main Digital Specimen information while another will hold the
Digital Media Object information. This makes working with the data much simpler, but also
means we will have to join information from multiple tables.

Indexing Solution
In addition to stable persistent storage, we want an indexing solution for fast full-text
searches. This is a functionality traditional databases lack and which will require a specific
optimization solution. Within the indexing engine, we will only hold the last version of the
FDO. Queries regarding full text searches or aggregated queries will be run using the
indexing solution.

Additionally, the indexing solution can be used to provide data to dashboards. The
dashboards will show data aggregations displaying for example the average MIDS level of a
dataset or the distribution of specimens over institutions. By being able to quickly provide
aggregated information, we can better monitor our digitization effort.

Data derivatives
Most data inquiries should be covered by the above two solutions. However, there may be
use cases for which we require specific data products. An example could be the provision of
full data dumps through an API as described in BiCIKL Deliverable 1.3, recommendation 2.5
(Addink 2022). For these data derivatives, the database would form the main source of truth.
Products based on this can be created at a regular interval or at the moment of request.
Instead of the immediate response coming from the API this is either a batch process running
on a regular interval or an asynchronous process.

To store the data derivatives, we would look into options specifically tailored for the data. In
the case of a full data dump we would use cloud storage in the form of S3 buckets to store
our data. This data can then be exposed both to users and machines.

Java Backend
For serving the APIs, we will use Java as a programming language together with the Spring
Boot framework. Java is a statically typed programming language, compiled before use. This
enables strict control and minimizes errors due to unexpected types. It has strict exceptional
handling which helps to ensure all exceptions are correctly caught and given back to the
user. Additionally, it is supported by a large community and is one of the most widely used



programming languages. This means that there is a large developer pool which helps in
continuity over a longer period of time. It also helps that there are plenty of examples
available. Several other infrastructure or components have been written in Java, such as the
Handle Server and the DOIP interface. This eases implementation and lowers the bar for
exchanges of code and ideas.

The backend applications handling the requests will be stateless. Statelessness enables us
to run multiple instances in parallel without creating conflicts. The main purpose for this is to
be able to upscale when the load on the backend increases through extensive usage.

Routing
Incoming calls will be routed with the use of Traefik Proxy. Traefik is an open-source Edge
Router which helps publish our APIs. It forms the entrypoint into our DiSSCo infrastructure,
from here requests are routed to the specific services which will handle the request.
Additionally, Traefik helps with securing our endpoints and enabling rate limiting, white/black
listing IP’s and many more options. One of the main benefits of Traefik Proxy is the dynamic
configuration. This means that we can update the configuration without having to restart the
proxy, limiting downtime.

https://handle.net/index.html
https://www.dona.net/specs-software-documents
https://doc.traefik.io/traefik/


General set of APIs
DiSSCo will provide a generalised set of APIs to our users. These APIs will be used by
humans and machines and also by other DiSSCo services. The APIs form the backbone of
the data exposure and is the main point of access into DiSSCo’s data.

Although we aim to create a consistent set of APIs, we need to cater to different groups of
users with different requirements. As one of our aims is to keep both the barrier to usage low
and provide expert users with sufficient information, we decided to create different views of
the data. For example, we provide a set of simple APIs based on the JSON:API standard for
the frontend and groups of users interested in a simple JSON structure. We created a
separate API with a slightly different structure for Linked Data that provides more contexts.
This API follows the JSON-LD principles where it provides context on the terms used.

API for JSON:API
For the DiSSCo services and user requests we will implement a set of APIs based on the
JSON:API specification. The JSON:API specification provides a set of shared conventions
based on best practices. It provides clear guidelines on how endpoints should be structured
and how request and response should look like. Following this specification is one of the
recommendations made in BiCIKL Deliverable 1.3, see 3.4.3 and 3.7 (Addink 2022).

JSON:API endpoints will be provided for all objects and all actions. Not only read functionality
will be implemented but also all necessary Create, Update and Delete actions will be based
on the JSON:API specification. Examples of the objects are Digital Specimen, Organisations,
Digital Media Objects and Annotations.

The data model with JSON:API is required to have at least one of the following top-level
members: data, errors, metadata, or a member defined in an JSON:API extension. When
data is requested, this will contain the ‘data’ member. This ‘data’ member must have a
resource object which has a type and an identifier. This is where we will make the connection
with FAIR Digital Object (FDO).

FDO’s have the same requirements, they need to have an identifier and an FDO Type. We
will use the Persistent Identifier (PID) from the FDO as the value for the JSON:API resource
identifier field. The FDO Type we will use in the JSON:API resource type field. The rest of the
data will go into the JSON:APIs attributes field. Below, we provide an example based on a
Digital Specimen.

Example
{
"data": {
"type": "20.500.1025/ZoologyInvertebrateSpecimen",
"id": "20.5000.1025/5TP-ELC-19L",
"attributes": {
"ods:primarySpecimenData": {
"ods:midsLevel": 1,
"dwc:county": "Helsinki",
"dwc:country": "Finland",

https://jsonapi.org/


"dwc:eventID": "http://tun.fi/JX.161565#1"
}

},
"links": {
"self": "https://sandbox.dissco.tech/api/v1/specimens/20.5000.1025/5TP-ELC-19L"

}
}

}

API for JSON-LD
JSON-LD builds on top of JSON and Linked Data. It provides the ease of JSON combined
with the standards of LinkedData by providing additional metadata on the attributes used. By
connecting the attributes to general concepts, ontologies, it enhances interoperability and
machine-readability. JSON-LD is mentioned in BiCIKL Deliverable 1.3 under section 3.4.1 as
a recommendation for serialisation if the use case makes sense to conform to LinkedData
(Addink 2022).

However, it adds additional complexity to the data model as it enforces a mapping to an
ontology. For a user, this might overcomplicate a simple data request. Compatibility with the
JSON:API specification is limited, which further complicates a single integrated endpoint. In
the DiSSCo openDS work sessions, it was therefore determined that we would provide
separate endpoints for several data standards/specifications. The JSON-LD endpoint won’t
provide the full range of CRUD functionality, users will only be able to read data following this
specification. Users will have to use the JSON:API endpoints if they want to add or modify
information.

The data model of JSON-LD has three important attributes. It uses the “@id” attribute for the
unique identifier value. This is the attribute which we will use to provide the PID. The “@type”
will be used to provide for the FDO Type. Additionally, JSON-LD uses “@context” to provide
the context (namespaces) of the ontologies. Here we will refer to other ontologies so that
information about the attributes can be requested and connections can be made. Some
existing ontologies under discussion are W3C PROV-O for provenance data model, W3C
Annotation (Ref DPP 6.4 and 5.4). Within the wider biodiversity domain Biological Collections
Ontology is used which has been also under discussion (see Walls et al. 2014 for a more
detail discussion on BCO and related ontologies and inadequacy of Darwin Core terms).

Example
{
"@context": {
"hdl": "https://hdl.handle.net/",
"ods": "http://github.com/DiSSCo/openDS/ods-ontology/terms/",
"dwc": "http://rs.tdwg.org/dwc/terms/"

},
"@id": "hdl:20.5000.1025/5TP-ELC-19L",
"@type": "20.500.1025/ZoologyInvertebrateSpecimen",
"ods:primarySpecimenData": {
"ods:midsLevel": 1,
"dwc:county": "Helsinki",

https://json-ld.org/
https://www.w3.org/TR/prov-o/
https://www.w3.org/TR/annotation-vocab/
https://www.w3.org/TR/annotation-vocab/
https://obofoundry.org/ontology/bco.html
https://obofoundry.org/ontology/bco.html


"dwc:country": "Finland",
"dwc:eventID": "http://tun.fi/JX.161565#1"

}
}

API for (Cloud)events
DiSSCo intends to use an event driven design approach for data exchange as different
content management systems and other databases will interact with DiSSCo (Glöckler 2022).
DiSSCo systems and services need to be aware and often react to changes happening in
other systems. We will use the event based approach both for exchanging information with
external parties such as the data providers and data aggregators such as GBIF and
GeoCase as well as internally for the exchange of information between different DiSSCo
services.

For this event driven data exchange, we will build on top of existing industry standards. One
of these standards is CloudEvents. In DiSSCo Prepare deliverable 6.1, CloudEvents has
been introduced and examples are available there (Glöckler 2022). The deliverable also
provides API Guidelines for implementation of the event driven exchange. It combines both
the JSON:API specification and the CloudEvents data modeling of the event data.

Example
{
"data": {
"type": "event",
"id": "A234-1234",
"attributes": {
"specversion": "1.0",
"type": "org.dissco.event.object.created",
"source": "https://collection.myinstitution.com/dissco/event",
"subject": "item 123",
"id": "A234-1234",
"time": "2022-02-06T17:31:00Z",
"datacontenttype": "text/json",
"data": "{ // put the payload here }"

},
"links": {
"self": "https://collection.myinstitution.com/dissco/event/A234-1234"

}
}

}

DOIP
The Digital Object Interface Protocol specifies a standard way for clients to interact with
digital objects (DOs).1 It has been built on top of the TCP specification. This means that it will

1 https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf



differ from the above discussed endpoint, which are all available over HTTP. DOIP is aimed
at machine interoperability and requires technical knowledge to implement.

DOIP consists of a set of basic operations which cover the basic CRUD functionality.
Additionally, it provides support for extending this set of basic operations with custom object
type specific operations.

DiSSCo will use the Java library provided by the DONA foundation to implement the DOIP
protocol.2 Using the library, we ensure that DiSSCo is correctly implementing DOIP, and we
align with other users.

Example
{

"status": "0.DOIP/Status.1",

"output": {

"id": "20.5000.1025/5TP-ELC-19L",

"type": "ZoologyInvertebrateSpecimen",

"attributes": {

"content": {

"id": "20.5000.1025/5TP-ELC-19L",

"ods:primarySpecimenData": {

"ods:midsLevel": 1,

"dwc:county": "Helsinki",

"dwc:country": "Finland",

"dwc:eventID": "http://tun.fi/JX.161565#1"

}

}

}

}

}

Asynchronous endpoints

Asynchronous endpoints are endpoints which will trigger an action but will not return the
response immediately. This happens primarily when it takes time to gather the requested
data. APIs are aimed to return a response from the server immediately. If this response takes
minutes or even hours, the API will time out and the response is lost. In these instances, it is
better to collect the data and reach out to the user when the request has been completed.
There are different ways to inform the user that the requested data is ready, notifying them by
email is one example.

2 https://www.dona.net/sites/default/files/2020-09/DOIPv2SDKOverview.pdf



Within DiSSCo, we might have asynchronous endpoints. DiSSCo might provide large
datasets or calculated data products which take too long or are too big to provide through a
regular API. In these cases, we will indicate that the request has been successfully received,
and the data processing has started. We will process the request and store the result. The
user will then be informed that the data product has been completed and is ready to be
downloaded. The user can now download the product through a URL provided by DiSSCo.

Versioning
Stability is incredibly important for the APIs on which other DiSSCo services are dependent.
For API versioning, DiSSCo will follow the guidelines in BiCIKL deliverable 1.3, section 4
(Addink 2022). We will have a major version in the URL path of the API, for example
dissco.eu/api/v1/… Breaking changes will be minimized, but when they do happen the major
version in the path will be incremented. Older versions will stay functional until all users have
been informed and been given time to migrate.

In general, we want to preserve backward compatibility as much as possible. This means
that when we make changes, we won’t remove fields but can add fields to the API. The
reader will be able to use the old schema for reading and parsing data. The writer, however,
can add additional data in the schema as long as older properties are not removed. This
enables DiSSCo to add new information in a current version without breaking functionality of
dependent APIs. When we introduce new fields for APIs where clients send us a document,
CREATE/UPDATE endpoints, the new fields should be optional. This way the client will not
be forced to make a change but can slowly transition to the new schema.

Documentation
Open and up-to-date documentation has been indicated as critical in BiCIKL deliverable 1.3,
1.4 (Addink 2022). Within DiSSCo we will try to keep the threshold for using the APIs as low
as possible. This will include extensive documentation and examples on how to use the
endpoints. DiSSCo will provide documentation in several forms.

OpenAPI v3
OpenAPI v3 has become the industry standard for documenting APIs. DiSSCo will use
OpenAPI v3 documentation and expose it through our public endpoint. The documentation
will not be manually written, but generated by the code. This way, the documentation will
always reflect the code and will always be up-to-date. It gives guarantees towards our users
and frees up time from our developers.

DiSSCo will have different applications with different sets of endpoints. Each will have its own
OpenAPI documentation page. To indicate where all the OpenAPI pages live, we will provide
a set of link and descriptions on our DiSSCo websites.

Swagger
OpenAPI v3 documentation is a great way to inform machines on the API structure but it is
difficult to read as a human. For humans, we will create a Swagger endpoint. Swagger



provides a visual and easy to understand documentation for humans. Public endpoint can be
directly tested and response objects can be reviewed. Just as the OpenAPI documentation,
the Swagger endpoint will also be generated based on the code to ensure full and up-to-date
documentation.

FDO Types
Almost all objects within the DiSSCo infrastructure will be FAIR Digital Objects (FDOs). One
of the core aspects of an FDO is the FDO Type. The FDO Type are attributes which describe
the data object. It tells the machines how to process the FDO's internal structure and
payload. This enables machine actionability. Within DiSSCo all FDO Types will receive a PID
which is resolvable to the FDO Type, which contains a description of the object. For these
descriptions, JSON Schema will be used. JSON Schema is a declarative language which
describe the data format and provides documentation for both human and machine.

Term documentation
The data model for the object will be based on the openDS data specification. This data
specification will be created and maintained by DiSSCo. OpenDS will contain several new
terms for describing the data properties. These terms will be extensively documented. In
DiSSCo Prepare Deliverable 5.3 is described how and where the terms will be described
(Fichtmueller 2023).

Metrics
DiSSCo will monitor the status of the different services. To provide insight into the current
state and response time of the API, DiSSCo will provide a service monitor page for its users.
This page will contain metrics about the API and other DiSSCo services and will check
service availability in line with recommendation 2.3.2 in the BiCIKL Deliverable 1.3 (Addink
2022).

Environments
Within DiSSCo we use several environments: Test, Acceptance, and Production. We do this
to test our code through various stages and get the approval of the stakeholders before
releasing new features. The test environment is used by developers to quickly run their code
in a production-like environment. It always runs the latest version of the main branch of the
code. When a complete feature has been finished, the code will be released to the
acceptance environment. Acceptance is used for testing by the stakeholders. They can
check if the requested feature is conforming to expectations and if no issues are overlooked.

When the stakeholders agree and possible acceptance tests have been completed
successfully, the code will be released to production. Code in production always reflects a
specific moment in time, a specific version of the code. This way, it can be easily rolled back
to an earlier version if an issue is encountered.

As APIs are part of the code base, they will follow the same path. Additionally, the
acceptance environment can be used to test data imports. If users provide data, and they are



unsure if the data is correct, the acceptance environment can be used. While the acceptance
environment is production-like, it is completely separated from it. This means that if adding
data creates an issue, this can easily be reversed. Through the acceptance environment,
DiSSCo implements recommendation 2.4 of the BiCIKL recommendations.

Security
DiSSCo uses several methods to guarantee secure APIs. APIs from an opening in the
DiSSCo infrastructure and therefore need to be well protected and monitored. This protection
extends to the data in which some of DiSSCo’s data might be non-public and needs to be
protected against unwarranted access.

Certificate/ciphers
The API will be secured by using Transport Layer Security (TLS). TLS makes sure that the
communication between the user and the API is impossible to read. This means that all
information will be encrypted and can only be accessed by the party that has the correct
certificate. TLS certificates also enables Hyper Text Transfer Protocol Secure (HTTPS). This
means that all communication between two websites is based on the TLS certificates and is
therefore secured. DiSSCo will enforce HTTP Strict Transport Security (HTST) which force all
connection to use the HTTPS protocol. A request to the HTTP protocol will automatically be
redirected to the secure endpoint. DiSSCo will also enforce additional security headers to
prevent further malicious attacks to get into the system.

For encrypting the traffic between user and server, DiSSCo only supports the latest versions
of TLS, TLS 1.2 or TLS 1.3. This ensures that vulnerabilities in earlier versions of TLS cannot
be exploited. This also enables the use of modern cipher suites for encrypting the traffic.
DiSSCo will run regular security reviews to check whether we need to upgrade to a newer
version. This might mean that older browsers will no longer be supported.

AAI
Within DiSSCo we use the data policy “As open as possible, as closed as necessary”
(Hardisty 2019). This means that we will try to keep all data accessible to everyone but we
might have some data that can only be reviewed by specific users. To enforce access
control, we use an Authorisation and Authentication Infrastructure (AAI). This AAI enables us
to authenticate users and given them authorisation to certain parts of the data.

For authorisation we will make use of the OAuth2 protocol. This industry-standard protocol
creates a standardized and simple way to ensure safe access to restricted resources. On top
of OAuth2, we will use OpenID Connect (OIDC) for user authentication. OIDC provides
information about the user that has logged in, for example his/her email address. OIDC uses
encoded JSON Web Tokens (JWT) which contain information about the users. DiSSCo will
use OIDC mainly as a way to extract the users' identity from the token. Other information
about the user will be stored within DiSSCo’s own data storage.

Within OAuth2, bearer tokens are used to secure the endpoint. First, a user needs to request
a token with an identity and access management (IAM) tool. DiSSCo will use Keycloak as

https://oauth.net/2/
https://openid.net/connect/


IAM tooling managed by GRNET. After the user has received the bearer token, they can
make a request to the non-public API with the bearer token as a request header. Within
OAuth2 this is called an “Authorization Code Flow”.3

There is a problem with this flow for machine to machine interaction. The machine is not an
actual user, so it doesn't make sense for the machine to have a username and a password.
For machine to machine interaction, we will use the “Client Credentials Flow”. We will create
a client, with certain authorisation, which will generate a clientId and a clientSecret. These
credentials can be used by the machine to request a token at our IAM tool. The received
token can then be used by the machine to request the API.4

Privacy policy
DiSSCo will store certain user information in the system, such as first and last names or
email addresses. It will do this to provide a better user interaction and experience. For
example, we would like to know who added certain annotations to a digital specimen. Based
on the name of the user, other users might assign a certain value to these annotations. We
might also want to email the user when certain changes were made to his/her annotations.
To store this user information, DiSSCo will request the user to accept a privacy policy. In the
privacy policy, DiSSCo will state which data it will gather, how it is used, disclosed and
managed.

Rate limiting
Rate limiting is generally used to prevent Distributed Denial-of-Service (DDoS) attacks. By
limiting the amount of requests a single user can send to the server per time period, we can
prevent a single user overloading the service. DiSSCo will evaluate if rate limiting is needed
and what the rate limit needs to be to prevent malicious use of the APIs while maintaining
optimal functionality for our users.

Discussion and Outlook
In this DiSSCo Prepare Deliverable we have presented the results of our work regarding
specifications for a standardised set of APIs. We tried to build on industry standards and
create simple, modular yet powerful endpoints. As indicated in the introduction, this
document is a living document. Certain decisions might need to be reevaluated after further
discussion and implementation. In particular, the decision to implement both the JSON:API
specification as well as a different set of endpoints for JSON-LD might need further
discussion. Use of both JSON and JSON-LD has its merits and it would be nice to combine
them. However, the current added complexity made us decide to develop them separately.
New versions of the specifications might improve interoperability and make us revise this
decision.

During the project we tried to immediately test and implement our ideas adhering to Agile and
DevOps practices. Over 35 endpoints have been written during this stage and more are
added regularly. Agile and DevOps methods keep feedback loops short, assess technical

4 https://www.rfc-editor.org/rfc/rfc6749#section-4.4
3 https://www.rfc-editor.org/rfc/rfc6749#section-4.1



feasibility, and help to gather valuable experience with the different specifications. The main
group of endpoints for the DiSSCo test environment is available through the DiSSCo
sandbox. Swagger endpoint can be found at: https://sandbox.dissco.tech/api/swagger-ui.html

The next step would be to implement the specification written in this document and enforce it
on all our API endpoints. Several endpoints, such as the DOIP, have not yet been
implemented and will be tested before we start DiSSCo Construction phase in 2024.

https://sandbox.dissco.tech/api/swagger-ui.html


Acronyms, terms, and definitions

Acronym Term Definition in the DiSSCO context

API Application Programming Interface A way for two or more applications to
communicate with each other.

BiCIKL Biodiversity Community Integrated
Knowledge Library

European project that aims to connect
infrastructures to enable researchers to
access services across the biodiversity
data lifecycle

DOA Digital Object Architecture DOA introduces the concept of a digital
object, which forms the basis for the
architecture by specification of three key
components: Identifier/resolution system,
repository system, and registry system.

DOIP Digital Object Interface Protocol A simple but powerful conceptual protocol
for software applications interacting with
services.

DMF DiSSCo Modelling Framework An instance of Wikibase where the
DiSSCo data model is being developed.

DDoS Distributed Denial-of-Service attack A malicious attempt to disrupt the normal
traffic of a targeted server, service, or
network by overwhelming the target or its
surrounding infrastructure with a flood of
internet traffic.

ELViS European Loans and Visits System

FAIR The FAIR Data principles Guidelines to improve and foster reuse of
digital research assets with respect to the
four foundational principles Findability,
Accessibility, Interoperability, and
Reusability.

FAIRification Process describing the stepwise
transformation from an initially non-FAIR
dataset to deployment as FAIR data
resource.

FDO FAIR Digital Object FDOs are abstracted data objects
encapsulating content, descriptive
metadata and globally resolvable and
persistent identifiers in compliance with
the FAIR principles.

FDO Type FAIR Digital Object Type Attribute assigned to FDOs that signals
machines how to autonomously process
the FDO's internal content (key
requirement for machine actionability).

https://bicikl-project.eu/
https://bicikl-project.eu/
https://www.dona.net/digitalobjectarchitecture
https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
https://modelling.dissco.tech/
https://elvis.dissco.eu/
https://doi.org/10.1038/sdata.2016.18
https://www.go-fair.org/fair-principles/fairification-process/
https://fairdo.org/


GRNET Greek Research and Technology
Network

Greek national infrastructure which
provides e-infrastructures to academic and
research institutions.

JSON Java Script Object Notation Lightweight, text-based,
language-independent interchange format
for structured data.

JSON-LD JSON for Linking Data JSON-LD is a syntax to serialize Linked
Data in JSON and can therefore be used
as an RDF syntax.

JSON:API JSON API specification A Specification for building APIs in JSON

JWT JSON Web Token An open standard for representing claims
securely between two parties

LD Linked Data Set of methods to publish structured and
connected data involving i.a. controlled
vocabularies and ontologies to enable
machine-interpretability of data.

MIDS Minimum Information about a
Digital Specimen

Specification defining information
elements for graded digitization levels of
physical specimens.

openDS Open Digital Specimen Specification providing the set of elements
to model DES (and other curated
biodiversity objects) as typed data objects
compliant with FDO specifications.

OAuth2 OAuth 2.0 An industry-standard protocol for
authorization

OIDC OpenID Connect An identify layer on top of the OAuth 2.0
protocol

RDF Resource Description Framework Standard data model of the Semantic Web
to model resources and statements about
those as triples in a knowledge graph.

Schema.org Comprehensive widely spread structured
data vocabulary for web services with the
aim to improve the findability of resources
on the web.

TLS Transport Layer Security Protocol Protocol to provide privacy and data
integrity between two communicating
applications.

UCAS Unified Curation and Annotation
Service

A user-friendly website where users can
search Digital Specimen and annotate
them.

W3C World Wide Web Consortium W3C is an international community which

https://grnet.gr/
https://grnet.gr/
https://datatracker.ietf.org/doc/html/rfc7159
https://json-ld.org/
https://jsonapi.org/
https://www.rfc-editor.org/rfc/rfc7519
https://www.w3.org/DesignIssues/LinkedData.html
https://github.com/tdwg/mids
https://github.com/tdwg/mids
https://github.com/DiSSCo/openDS
https://oauth.net/2/
https://openid.net/connect/
https://www.w3.org/TR/rdf11-primer/
https://schema.org
https://www.rfc-editor.org/rfc/rfc5246
https://sandbox.dissco.tech/
https://sandbox.dissco.tech/
https://www.w3.org


develops and issues essential Web
standards including HTML5, the Semantic
Web stack, XML, and SPARQL.



References
Addink W, Hardisty AR (2020) ‘openDS’ – Progress on the New Standard for Digital
Specimens. Biodiversity Information Science and Standards 4: e59338.
https://doi.org/10.3897/biss.4.59338

Addink, W., Kyriakopoulou, N., Penev, L., Fichtmueller, D., Norton, B. & Shorthouse, D.
(2022). Best practice manual for findability, re-use and accessibility of infrastructures.
Deliverable D1.3 EU Horizon 2020 BiCIKL Project, Grant Agreement No 101007492.

Fichtmueller D. (2022) Milestone Report MS 5.7 "Compilation of data standards forming the
basis for the initial version of the DiSSCo Digital Specimen Object Specification".
https://doi.org/10.34960/jemd-0y02

Fichtmueller D., Weiland C., Grieb J., Islam S., Dillen M., von Mering S. & Güntsch A. (2023)
DiSSCoPrepare Deliverable 5.3 "DiSSCo Digital Specimen Object Specifications".
https://doi.org/10.34960/vn64-ws93

Glöckler F., Pim Reis J., von Mering S., Petersen, M., Weiland, C., Dillen, M., Leeflang, S.,
Haston, E., Addink, W., Fichtmüller, D. (2022), DiSSCo Prepare report D6.1 Harmonization
and migration plan for the integration of CMSs into the coherent DiSSCo Research
Infrastructure, https://doi.org/10.34960/366d-sf49

Hardisty, Alex. (2019). Provisional Data Management Plan for DiSSCo infrastructure.
Deliverable D6.6. ICEDIG. https://doi.org/10.5281/zenodo.3532937

Hardisty AR, Addink W, Glöckler F, Güntsch A, Islam S, Weiland C (2021) A choice of
persistent identifier schemes for the Distributed System of Scientific Collections (DiSSCo).
Research Ideas and Outcomes 7: e67379. https://doi.org/10.3897/rio.7.e67379

Leeflang, S, Weiland, C, Grieb, J, Dillen, M, Islam, S, Fichtmueller, D, Addink, W, & Haston,
E (2022). DiSSCo Prepare D6.2 Implementation and construction plan of the DiSSCo core
architecture (1.2). Zenodo. https://doi.org/10.5281/zenodo.6832200

Walls, R.L., Deck, J., Guralnick, R., Baskauf, S., Beaman, R., Blum, S., Bowers, S., Buttigieg,
P.L., Davies, N., Endresen, D. and Gandolfo, M.A., 2014. Semantics in support of biodiversity
knowledge discovery: an introduction to the biological collections ontology and related
ontologies. PloS one, 9(3), p.e89606. https://doi.org/10.1371/journal.pone.0089606

https://doi.org/10.3897/biss.4.59338
https://doi.org/10.34960/jemd-0y02
https://doi.org/10.34960/vn64-ws93
https://doi.org/10.34960/366d-sf49
https://doi.org/10.5281/zenodo.3532937
https://doi.org/10.3897/rio.7.e67379
https://doi.org/10.5281/zenodo.6832200
https://doi.org/10.1371/journal.pone.0089606

